On a geometric quantization scheme generalizing those of Kostant-Souriau and Czyz.- Further applications of geometric quantization.- General vector field representations of local Heisenberg systems.- Aspects of relativistic quantum mechanics on phase space.- On the confinement of magnetic poles.- SU(3) and SU(4) as spectrum-generating groups.- The phase space for the Yang-Mills equations.- Instantons in nonlinear ?-models, gauge theories and general relativity.- Gauge-theoretical foundation of color geometrodynamics.- Non-associative algebras and exceptional gauge groups.- Atiyah-Singer index theorem and quantum field theory.- Topological concepts in phase transition theory.- Life without T2.- Affine model of internal degrees of freedom in a non-euclidean space.- Jet bundles and weyl geometry.- Line fields and Lorentz manifolds.- The manifold of embeddings of a closed manifold.- The manifold of embeddings of a non-compact manifold.
Reihe
Auflage
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für Beruf und Forschung
Research
Illustrationen
2
2 s/w Abbildungen
VII, 329 p. 2 illus.
Maße
Höhe: 244 mm
Breite: 170 mm
Dicke: 19 mm
Gewicht
ISBN-13
978-3-540-10578-7 (9783540105787)
DOI
Schweitzer Klassifikation
On a geometric quantization scheme generalizing those of Kostant-Souriau and Czyz.- Further applications of geometric quantization.- General vector field representations of local Heisenberg systems.- Aspects of relativistic quantum mechanics on phase space.- On the confinement of magnetic poles.- SU(3) and SU(4) as spectrum-generating groups.- The phase space for the Yang-Mills equations.- Instantons in nonlinear ?-models, gauge theories and general relativity.- Gauge-theoretical foundation of color geometrodynamics.- Non-associative algebras and exceptional gauge groups.- Atiyah-Singer index theorem and quantum field theory.- Topological concepts in phase transition theory.- Life without T2.- Affine model of internal degrees of freedom in a non-euclidean space.- Jet bundles and weyl geometry.- Line fields and Lorentz manifolds.- The manifold of embeddings of a closed manifold.- The manifold of embeddings of a non-compact manifold.