I. Todorov, Perturbative quantum field theory meets number theory.- E. Panzer, Some open problems on Feynman periods.- S. Stieberger, Periods and Superstring Amplitudes.- O. Schlotterer.- The number theory of superstring amplitudes.- N. Matthes, Overview On Elliptic Multiple Zeta Values.- L. Adams, C. Bogner, S. Weinzierl, The Elliptic Sunrise.- C. Vergu, Polylogarithm identities, cluster algebras and the N = 4 supersymmetric theory.- H. Bachmann, Multiple Eisenstein series and q-analogues of multiple zeta values.- H. Bachmann, U. Kühn, A dimension conjecture for q-analogues of multiple zeta values.- J. Zhao, Uniform Approach to Double Shuffle and Duality Relations of Various q-Analogs of Multiple Zeta Values via Rota-Baxter Algebras.- J. Singer, q-Analogues of multiple zeta values and their applications in renormalization.- N. M. Nikolov, Vertex algebras and renormalization.- K. Rejzner, Renormalization and periods in perturbative Algebraic Quantum Field Theory.- C. Malvenuto, F. Patras, Symmetril moulds, generic group schemes, resummation of MZVs.- A. Salerno, L. Schneps, Mould theory and the double shuffle Lie algebra structure.- F. Chapoton, On some tree-indexed series with one and two parameters.- K. Ebrahimi-Fard, W. Steven Gray, D. Manchon, Evaluating Generating Functions for Periodic Multiple Polylogarithms.- D. Manchon, Arborified multiple zeta values.- L. Foissy, F. Patras, Lie theory for quasi-shuffle bialgebras.- H. Furusho, Galois action on knots II: Proalgebraic string links and knots.- H. Nakamura, Z. Wojtkowiak, On distribution formulas for complex and l-adic polylogarithms.- W. Zudilin, On a family of polynomials related to ?(2,1)=?(3).