The Riemann-Hilbert problem (Hilbert's 21st problem) belongs to the theory of linear systems of ordinary differential equations in the complex domain. The problem concerns the existence of a Fuchsian system with prescribed singularities and monodromy. Hilbert was convinced that such a system always exists. However, this turned out to be a rare case of a wrong forecast made by him. In 1989 the second author (A. B.) discovered a counterexample, thus obtaining a negative solution to Hilbert's 21st problem in its original form.
Reihe
Auflage
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für höhere Schule und Studium
Für Beruf und Forschung
Research
Illustrationen
Maße
Höhe: 22.9 cm
Breite: 16.2 cm
Gewicht
ISBN-13
978-3-528-06496-9 (9783528064969)
DOI
10.1007/978-3-322-92909-9
Schweitzer Klassifikation
Prof. Anosov und Prof. Bolibrukh sind beide am Steklov Institut in Moskau tätig.
Introduction - Counterexample to Hilbert's 21st problem - Irreducible representations - Miscellaneous topics - The case p 3 - Fuchsian equations.