Among his thirty-three published papers, Ramanujan had only one continued fraction, the Rogers-Ramanujan continued fraction. However, his notebooks contain over 100 results on continued fractions. At the end of his second notebook are 100 pages of unorganized material, and the third notebook comprises thirty-three pages of disorganized results. In these 133 pages of material are approximately sixty theorems on continued fractions, most of them new results. In this monograph, the authors discuss and prove each of these theorems. Aimed at those interested in Ramanujan and his work, this monograph will be of special interest to those who work in continued fractions q-series, special function, theta-functions, and combinatorics. The work is likely to be of interest to those in number theory as well. The only required background is some knowledge of continued fractions and a course in complex analysis.
Detailed study of Ramanujan's own notebooks
This monograph will be of special interest to those interested in Ramanujan and his work, and also for those whose work is concerned with continued fractions, q-series, special function, theta functions, and combinatorics. This book covers all Ramanujan's unpublished work scattered amonst unorganized notebooks and containing previously undiscovered results.
Reihe
Sprache
Verlagsort
Zielgruppe
Maße
Höhe: 285 mm
Breite: 180 mm
ISBN-13
978-0-8218-2538-9 (9780821825389)
Copyright in bibliographic data is held by Nielsen Book Services Limited or its licensors: all rights reserved.
Schweitzer Klassifikation