Leading researchers in the field of Optimal Transportation, with different views and perspectives, contribute to this Summer School volume: Monge-Ampère and Monge-Kantorovich theory, shape optimization and mass transportation are linked, among others, to applications in fluid mechanics granular material physics and statistical mechanics, emphasizing the attractiveness of the subject from both a theoretical and applied point of view.
The volume is designed to become a guide to researchers willing to enter into this challenging and useful theory.
Reihe
Auflage
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Illustrationen
4
4 s/w Abbildungen
VIII, 169 p. 4 illus.
Maße
Höhe: 235 mm
Breite: 155 mm
Dicke: 11 mm
Gewicht
ISBN-13
978-3-540-40192-6 (9783540401926)
DOI
Schweitzer Klassifikation
Preface.- L.A. Caffarelli: The Monge-Ampère equation and Optimal Transportation, an elementary view.- G. Buttazzo, L. De Pascale: Optimal Shapes and Masses, and Optimal Transportation Problems.- C. Villani: Optimal Transportation, dissipative PDE's and functional inequalities.- Y. Brenier: Extended Monge-Kantorowich Theory.- L. Ambrosio, A. Pratelli: Existence and Stability results in the L1 Theory of Optimal Transportation.