Gravitationswellen

Geschichte einer Jahrhundertentdeckung
 
 
C.H. Beck (Verlag)
  • 1. Auflage
  • |
  • erschienen am 15. Februar 2018
  • |
  • 127 Seiten
 
E-Book | ePUB mit Wasserzeichen-DRM | Systemvoraussetzungen
E-Book | PDF mit Wasserzeichen-DRM | Systemvoraussetzungen
978-3-406-71942-4 (ISBN)
 
Der Physik-Nobelpreis 2017 für die Entdecker der Gravitationswellen ist der Erfolg von mehr als tausend Forschern, denen gemeinsam dieser Nachweis gelang. Der Physiker Hartmut Grote vom deutschen Gravitationswellendetektor GEO600 war an der Jahrhundertentdeckung beteiligt und erzählt ihre Geschichte aus erster Hand. Gravitationswellen werden von allen beschleunigten Körpern produziert, bei der Explosion von Sternen oder beim Verschmelzen zweier schwarzer Löcher genauso wie beim Start eines Autos. Unfassbar winzig, stauchen und strecken sie den Raum. Nun können wir sie nutzen, um unabhängig von Licht das Universum zu erforschen. Ein neues Zeitalter der Astronomie hat begonnen.
  • Deutsch
  • München
  • |
  • Deutschland
mit 14 Abbildungen und 3 Tabellen
  • 3,77 MB
978-3-406-71942-4 (9783406719424)
weitere Ausgaben werden ermittelt
Dr. Hartmut Grote ist Forschungsgruppenleiter am GEO600, dem deutschen Gravitationswellendetektor in der Nähe von Hannover. Er gehört zu den führenden Gravitationswellenforschern hierzulande und weltweit.
1 - Cover [Seite 1]
2 - Titel [Seite 3]
3 - Zum Buch [Seite 2]
4 - Über den Autor [Seite 2]
5 - Impressum [Seite 4]
6 - Inhalt [Seite 5]
7 - Vorwort [Seite 7]
8 - 1. Es gibt sie, es gibt sie nicht, es gibt sie [Seite 10]
8.1 - Gravitation: Von Newton zu Einstein [Seite 10]
8.2 - Die Vorhersage der Gravitationswellen aus der Allgemeinen Relativitätstheorie [Seite 17]
8.3 - Astronomische Verursacher von Gravitationswellen [Seite 22]
9 - 2. Es gibt sie, es gibt sie nicht [Seite 25]
9.1 - Joseph Weber [Seite 26]
9.2 - Wie unterscheidet man Signale von Rauschen? [Seite 30]
9.3 - Kontroverse und Konsens [Seite 33]
9.4 - Die Weiterentwicklung der Resonanzantennen [Seite 36]
10 - 3. Michelsons Erbe: Interferometer [Seite 39]
10.1 - Wellen, Interferenz und Interferometer [Seite 39]
10.2 - Das Michelson-Interferometer als Gravitationswellendetektor [Seite 44]
10.3 - Die Prototypen-Interferometer [Seite 56]
11 - 4. Interferometer rund um die Welt [Seite 61]
11.1 - LIGO [Seite 61]
11.2 - Virgo [Seite 68]
11.3 - GEO [Seite 72]
11.4 - TAMA und KAGRA [Seite 77]
12 - 5. Datenanalyse und Großer Hund [Seite 79]
12.1 - Modellierte Suche: Optimalfilter [Seite 80]
12.2 - Datenanalyse im Netzwerk [Seite 84]
12.3 - Kandidat und Signifikanz [Seite 87]
12.4 - Blinde Analyse [Seite 89]
12.5 - Großer Hund [Seite 91]
13 - 6. Es gibt sie! [Seite 94]
13.1 - Beobachtungen in den Datenläufen O1 und O2 [Seite 104]
13.2 - Verschmelzende Neutronensterne! [Seite 107]
14 - 7. Künftige Entwicklungen [Seite 112]
14.1 - Erdgebundene Interferometer [Seite 113]
14.2 - Suche bei anderen Frequenzen des Spektrums [Seite 117]
15 - Dank [Seite 122]
16 - Verzeichnis verwendeter Literatur [Seite 123]
17 - Bildnachweis [Seite 124]
18 - Personen- und Sachregister [Seite 125]

1. Es gibt sie, es gibt sie nicht, es gibt sie


Gravitation: Von Newton zu Einstein


Gravitation gilt als die schwächste unter den physikalischen Kräften, dennoch würde mir ein Sprung vom Hochhaus nicht gut bekommen. Beim Aufschlag auf den Boden wären es zwar elektromagnetische Kräfte, die mein weiteres Fallen durch den Asphalt verhindern würden, denn die Atome meines Körpers können diesen nicht so leicht durchdringen. Die Energie jedoch, die meinen Körper verformen würde, entspränge der Gravitationskraft.

Außer der Gravitation und den elektromagnetischen Kräften kennt die Physik noch die starke und schwache Kernkraft, die die Stabilität und den Zerfall der Atomkerne bestimmen, dabei aber lediglich innerhalb winziger Abstände zu diesen Kernen wirken. Zwar haben elektromagnetische Kräfte eine größere Reichweite als die starke und schwache Kraft, doch heben sie sich durch die Verteilung positiver und negativer Ladungen im Atom nach außen hin sehr schnell auf. Bei größeren Abständen dominiert die Gravitation, die eine Anziehungskraft zwischen allen uns bekannten Arten von Materie und Energie bewirkt. Im Weltraum ist sie die beherrschende Kraft, die gleichermaßen die Bewegung von Planeten, den Lebenszyklus von Sternen und die Entwicklung des gesamten Universums bestimmt.

Isaac Newton ermöglichte im späten 17. Jahrhundert mit der Formulierung seiner Bewegungsgesetze eine bis dahin nicht gekannte Präzision bei der Berechnung der Planetenbahnen, nachdem er erkannt hatte, wie sich Massen unter der Einwirkung von Kraft bewegen. Zusätzlich zu diesen Bewegungsgesetzen formulierte Newton auch ein Gesetz der Gravitation, das eine anziehende Kraft zwischen Massen beschreibt. Nach diesem Gesetz ziehen sich zwei Massen mit einer Kraft an, die proportional zur Größe der beiden Massen und umgekehrt proportional zum Quadrat ihres Abstands ist. Diese Gravitationskraft nach Newton wirkt sofort und ohne Verzögerung, also instantan: Wenn ich auf einer Tastatur tippe oder ein Glas hebe, wird dies sofort dem ganzen Universum mitgeteilt, weil dabei Massen ihre Position verändern und sich dadurch auch Richtung und Stärke der von ihnen ausgehenden Gravitationskraft ändern.

Nehmen wir Newtons Gravitationsgesetz und seine Bewegungsgesetze zusammen, dann haben wir folgende Kette von Ursache und Wirkung: Massen, wie beispielsweise unsere Sonne und die Planeten, üben instantan anziehende Kräfte aufeinander aus, die wiederum die Art und Weise bestimmen, in der sich diese Massen im Raum bewegen.

Durch die präzisen Vorhersagen von Planetenkonstellationen, die immer wieder durch Beobachtungen bestätigt wurden, galt Newtons Theorie im Laufe des 18. Jahrhunderts als Triumph und Gipfel des menschlichen Geistes. Im frühen 19. Jahrhundert hatte man jedoch eine Abweichung des Uranus, des nächsten Planeten jenseits des Saturns, von seiner berechneten Bahn beobachtet. Wenn Newtons Theorie richtig war, so gab es nur eine gute Erklärung für diese Abweichung: Es musste einen weiteren, bisher unbekannten, Planeten geben, dessen Einfluss auf die Bahn des Uranus die Abweichung erklären konnte. Der französische Mathematiker und Astronom Urbain Jean Joseph Le Verrier und der Engländer John Couch Adams berechneten die Position des unbekannten Planeten unabhängig voneinander. Le Verrier bat Johann Gottfried Galle, Observator an der Berliner Sternwarte, um eine Suche in dem von ihm berechneten Himmelsausschnitt. Schon kurze Zeit später hatte Galle mit seinen Mitarbeitern den Planeten entdeckt und schrieb an Le Verrier: Monsieur, der Planet, dessen Position Sie errechnet haben, existiert tatsächlich. Ein neuer Planet war gefunden, für den Le Verrier später den Namen Neptun vorschlug.

Dass ein Planet erstmals durch eine mathematische Vorhersage entdeckt wurde, war abermals eine grandiose Bestätigung von Newtons Gravitationstheorie. Es gab aber noch ein weiteres Problem: Der innerste Planet im Sonnensystem, Merkur, wies ebenfalls eine Abweichung von der nach Newton berechneten Bahn auf. Nach jeder Umkreisung der Sonne wandert das Perihel, der sonnennächste Punkt der Bahn des Merkurs, etwas weiter im Raum. In hundert Jahren summiert sich diese Verschiebung zu 574 Bogensekunden. Der größte Teil davon konnte durch den Einfluss der anderen Planeten mit der Newton'schen Theorie erklärt werden, doch blieb ein unerklärter Rest von etwa 8 Prozent (45 Bogensekunden). Nach seiner triumphalen Vorhersage der Existenz des Neptuns war Le Verrier nun überzeugt, er könne auch diese Anomalie der Merkurbahn durch einen noch unbekannten Planeten erklären: Ein Planet namens Vulcan sollte sie verursachen. Es blieb allerdings ein großes Rätsel, weshalb ein Planet, der so nahe an der Sonne seine Bahn ziehen musste, bisher nicht beobachtet worden war.

Erst Albert Einstein sollte dieses Rätsel mehr als fünfzig Jahre später lösen. Im Jahr 1905 hatte Einstein eine neue Theorie von Raum und Zeit vorgestellt, die aus zwei Annahmen folgt: (1) Licht breitet sich stets mit der gleichen Geschwindigkeit aus, unabhängig von der Geschwindigkeit der Lichtquelle oder des Beobachters. (2) Die physikalischen Gesetze und Messungen in gleichförmig bewegten Bezugssystemen (Inertialsysteme) sind immer gleich - das bereits von Galileo formulierte Relativitätsprinzip.

Aus diesen Annahmen resultiert die Spezielle Relativitätstheorie, aus der eine enge Verzahnung von Raum und Zeit folgt, die durch den Begriff der Raumzeit ausgedrückt wird. Eine Folge dieser Theorie lautete, dass nichts, einschließlich Information, sich schneller als mit Lichtgeschwindigkeit bewegen könne. Neben anderen Erwägungen führte diese radikale Idee Einstein zu der Schlussfolgerung, dass nicht nur das Verständnis von Raum und Zeit, sondern auch Newtons Gravitationsgesetz einer Revision bedürfe, denn nach Newton breitete sich die Gravitationskraft ja instantan, quasi mit unendlicher Geschwindigkeit aus. Bis dato hatte die instantane Ausbreitung den meisten Physikern kein Problem bereitet. Im Licht der Speziellen Relativitätstheorie war sie jedoch nicht mehr denkbar, und so machte sich Einstein an die Arbeit, eine neue, mit der Speziellen Relativitätstheorie zu vereinbarende Theorie der Gravitation zu entwickeln. Die Spezielle Relativitätstheorie heißt deshalb speziell, weil sie den Fall des Raums ohne Materie in Inertialsystemen behandelt. Die neue Theorie der Gravitation sollte dagegen den Namen Allgemeine Relativitätstheorie erhalten, weil sie auch Materie und die ihr entspringende Gravitation beschreibt.

Einsteins zentraler Gedanke bei der Abfassung der neuen Gravitationstheorie war die Nichtunterscheidbarkeit von Beschleunigung und Gravitationsanziehung: In einer Rakete ohne Fenster hat ein Astronaut keine Möglichkeit festzustellen, ob er mit der Rakete auf der Erde steht und auf den Start wartet, oder ob er im interstellaren Raum in einer sich beschleunigenden Rakete sitzt. Sein Körper würde in beiden Fällen mit der gleichen Kraft in den Sitz gepresst. Zugegeben, ein etwas skurriles Beispiel, denn ein Astronaut sollte stets wissen, wo er sich befindet, aber typisch für Gedankenexperimente, wie Einstein sie häufig benutzte. Diese Nichtunterscheidbarkeit von Beschleunigung und Gravitationsanziehung wird auch als (starkes) Äquivalenzprinzip bezeichnet, und Einstein nannte diese Idee den glücklichsten Gedanken meines Lebens.

Nach mehreren Jahren mühsamer Arbeit führten Einsteins Gedankenexperimente schließlich zu der neuen Theorie der Gravitation, der Allgemeinen Relativitätstheorie, die 1915 veröffentlicht wurde. Die zentrale neue Idee darin ist, dass der Raum selbst als verformbar betrachtet werden muss, während man ihn zuvor als unveränderlich und flach betrachtet hatte. Genauer gesagt, ist nicht nur der Raum verformbar, sondern die Raumzeit, also jene Einheit von Raum und Zeit, die schon durch die Spezielle Relativitätstheorie eingeführt wurde. Eine mögliche Krümmung der Zeit klingt sprachlich erst einmal ungewohnt. Gemeint ist damit eine Dehnung von Zeit, dass also zum Beispiel Uhren im gekrümmten Raum langsamer gehen. Wir sprechen im Folgenden einfach von der Krümmung des Raums, wenn wir die Rolle der Zeit außer Acht lassen, aber erinnern uns daran, dass im gekrümmten Raum stets auch die Zeit gedehnt wird. Was verursacht die Krümmung des Raums? Die Ursache ist in jedem Fall eine Masse oder Energie. Die Sonne krümmt den sie umgebenden Raum ebenso wie ein Apfel, wobei die von der Sonne hervorgerufene Krümmung entsprechend ihrer Masse größer als diejenige des Apfels ist.

In dem von einer Masse gekrümmten Raum bewegen sich andere Massen auf kürzesten Bahnen. So bewegt sich beispielsweise die Erde auf einer kürzesten Bahn in...

Dateiformat: EPUB
Kopierschutz: Wasserzeichen-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Verwenden Sie eine Lese-Software, die das Dateiformat EPUB verarbeiten kann: z.B. Adobe Digital Editions oder FBReader - beide kostenlos (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Wasserzeichen-DRM wird hier ein "weicher" Kopierschutz verwendet. Daher ist technisch zwar alles möglich - sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Wasserzeichen-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Verwenden Sie zum Lesen die kostenlose Software Adobe Reader, Adobe Digital Editions oder einen anderen PDF-Viewer Ihrer Wahl (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie die kostenlose App Adobe Digital Editions oder eine andere Lese-App für E-Books (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nur bedingt: Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Wasserzeichen-DRM wird hier ein "weicher" Kopierschutz verwendet. Daher ist technisch zwar alles möglich - sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

7,99 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Wasserzeichen-DRM
siehe Systemvoraussetzungen
PDF mit Wasserzeichen-DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen