UHV Transmission Technology

 
 
Elsevier (Verlag)
  • 1. Auflage
  • |
  • erschienen am 30. Oktober 2017
  • |
  • 776 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-805280-8 (ISBN)
 

UHV Transmission Technology enables power system employees and the vast majority of those caring for UHV transmission technology to understand and master key technologies of UHV transmission. This book can be used as a technical reference and guide for future UHV projects.

UHV transmission has many advantages for new power networks due to its capacity, long distance potential, high efficiency and low loss. Development of UHV transmission technology is led by infrastructure development and renewal, as well as smart grid developments, which can use UHV power networks as the transmission backbone for hydropower, coal, nuclear power and large renewable energy bases. UHV is a key enabling technology for optimal allocation of resources across large geographic areas, and has a key role to play in reducing pressure on energy and land resources.

  • Provides a complete reference on the latest ultra-high voltage transmission technologies
  • Covers practical applications made possible by theoretical material, extensive proofs, applied systems examples and real world implementations, including coverage of problem solving and design and manufacturing guidance
  • Includes case studies of AC and DC demonstration projects
  • Features input from a world-leading UHV team
weitere Ausgaben werden ermittelt
  • Front Cover
  • UHV Transmission Technology
  • Copyright Page
  • Contents
  • Preface
  • About Us
  • I. AC
  • 1 General
  • 1.1 Overview of UHV AC Transmission Development
  • 1.1.1 Classification of Voltage Levels
  • 1.1.2 Overview of International UHV AC Transmission Development
  • 1.1.2.1 United States
  • 1.1.2.2 The Former Soviet Union
  • 1.1.2.3 Japan
  • 1.1.2.4 Italy
  • 1.1.2.5 Canada
  • 1.1.3 History of HV AC Transmission Development in China
  • 1.2 Development Necessity for a UHV AC Grid in China
  • 1.2.1 Objective Requirements for Establishing a New Energy Supply System
  • 1.2.2 Objective Requirements for the Coordinated Development of an Electric Power Industry
  • 1.2.3 Advantages of UHV Transmission
  • 1.2.4 Economy of UHV Transmission
  • 1.2.4.1 Economy of UHV Transmission Technology
  • 1.2.4.2 Economy of the UHV Grid
  • 1.2.4.3 Calculation of Economic Benefits
  • 1.2.4.4 Input/Output Analysis
  • 1.2.4.5 Analysis of Competitiveness of Transmission Price
  • 1.2.4.6 Economy of the UHV AC Pilot and Demonstration Project
  • 1.2.4.7 Analysis of Competitiveness of the Transmission Price
  • 1.2.4.8 Financial Capability Analysis
  • 1.2.5 Objective Requirements for Developing the Equipment Manufacturing Industry
  • 1.2.6 Objective Requirements for Promoting Independent Innovation
  • 1.3 Determination of the Rated Voltage and Maximum Operating Voltage of the UHV AC Grid
  • 1.3.1 General
  • 1.3.2 Determination of Rated Voltage and Maximum Operating Voltage of the UHV AC Grid in China
  • 1.4 Construction and Prospects of UHV AC Grids in China
  • 1.4.1 Construction of a UHV AC Pilot and Demonstration Project in China
  • 1.4.1.1 Project Selection
  • 1.4.1.2 System Operating Conditions
  • 1.4.1.3 Project Construction Conditions
  • 1.4.1.4 Conformity With Technical Demands of the Pilot and Demonstration Project
  • 1.4.1.5 Risk Assessment
  • 1.4.2 Conclusion
  • 1.4.3 Engineering Design
  • 1.4.4 Insulation Level of UHV Equipment
  • 1.4.5 Commissioning and Operation
  • 1.4.5.1 System Commissioning
  • 1.4.5.2 System Operation
  • 1.4.6 Construction of the UHV Test Base and Simulation Center in China
  • 1.4.6.1 UHV AC Test Base
  • 1.4.6.2 UHV Tower Test Base
  • 1.4.6.3 Tibet High-Altitude Test Base
  • 1.4.6.4 Construction of the SGCC Simulation Center
  • 1.4.7 Planning and Prospects for UHV AC Grids in China
  • 2 UHV AC Grid and System Stability
  • 2.1 Construction of a UHV Synchronous Power Grid
  • 2.1.1 Development Trends and Experiences with Synchronous Power Grids in Foreign Countries
  • 2.1.1.1 Overview of the Main Grid Interconnections
  • 2.1.1.2 Experiences and Development Trends
  • 2.1.2 Development of the Power Grid in China
  • 2.1.3 Technology Development Roadmap of China's AC Synchronous Grid
  • 2.1.4 Key Technical Issues of Construction of the UHV Synchronous Grid in China
  • 2.1.4.1 Functions of AC and DC Transmission
  • 2.1.4.2 Functions of Different Voltage Levels of Grids
  • 2.1.4.3 Connecting the East China Grid to the North China-Central China UHV Synchronous Grid
  • 2.1.4.4 Asynchronous Interconnection between the Northeast Power Grid and the North China-Central China Synchronous Grid th...
  • 2.1.4.5 Asynchronous Interconnection Between the Northwest China Grid and the North China-Central China Synchronous Grid Th...
  • 2.1.5 Construction Scheme of China's UHV Synchronous Grid
  • 2.2 Security of a UHV Synchronous Grid
  • 2.2.1 Lessons Learned From Blackouts of Large Power Grids in Foreign Countries
  • 2.2.2 Security Strategies for Synchronous Grids
  • 2.2.3 Security and Stability Criteria of China's Grid
  • 2.2.4 Security of China's UHV Power Grids
  • 2.3 Security Analysis on the UHV Pilot and Demonstration Project
  • 2.3.1 Stability Analysis
  • 2.3.2 Reactive Compensation and Voltage Control
  • 2.3.2.1 Reactive Power Characteristics of a UHV Transmission and Transformation System
  • 2.3.2.2 Reactive Compensation Measurements for a UHV Transmission and Transformation System
  • 2.3.2.3 Reactive Power Compensation and Voltage Control of a UHV AC Pilot and Demonstration Project
  • 3 UHV AC System Overvoltage and Insulation Coordination
  • 3.1 Power Frequency Overvoltage and Suppression Measures
  • 3.1.1 Main Causes of Power Frequency Overvoltage
  • 3.1.2 Suppression Measures for Power Frequency Overvoltage
  • 3.1.3 Use Conventional High-Voltage Shunt Reactors to Suppress Power Frequency Overvoltage
  • 3.1.4 Use of Controllable High-Voltage Shunt Reactors to Suppress Power Frequency Overvoltage
  • 3.1.5 Duration of Power Frequency Overvoltage due to Three-Phase Load Rejection During a Single Phase to Ground Fault
  • 3.2 Secondary Arc Current and Recovery Voltage
  • 3.2.1 Secondary Arc Current and its Suppression Measures
  • 3.2.2 Secondary Arc Current and Recovery Voltage of UHV and EHV Power Transmission Systems
  • 3.2.3 Impact of a Series Compensation Device on Transient Secondary Arc Current
  • 3.3 Switching Overvoltage and Suppression Measures
  • 3.3.1 Main Measures to Suppress the Switching Overvoltage of the UHV System
  • 3.3.2 Closing Overvoltage of a UHV System
  • 3.3.3 Opening (Load Rejection) Switching Overvoltage
  • 3.4 Very Fast Transient Overvoltage (VFTO)
  • 3.4.1 Study Method for VFTO in UHV Substations
  • 3.4.2 VFTO in GIS Substations During Switching of the Disconnector Without Switching the Resistor
  • 3.4.3 Using a GIS Disconnector Fitted with a Switching Resistor to Suppress VFTO
  • 3.4.4 Parameters of Switching Resistors for the Disconnector
  • 3.4.5 VFTO in HGIS Substations
  • 3.4.6 VFTO on the Transformer Side
  • 3.5 Lightning Overvoltage and Protection
  • 3.5.1 Lightning Overvoltage of UHV AC Power Transmission Lines and Protection Against It
  • 3.5.1.1 Operational Experience With AC Power Transmission Lines
  • 3.5.1.2 Calculation Method of Lightning Performance
  • 3.5.1.3 Lightning Protection of the UHV AC Power Transmission Line
  • 3.5.2 Lightning Overvoltage of UHV Substations and Protection
  • 3.5.2.1 Direct Lightning Strike Shielding
  • 3.5.2.2 Lightning Intruding Overvoltage Protection of UHV Substations
  • 3.5.3 Examples of Calculating Lightning Trip-Out Rates of UHV AC Power Transmission Lines
  • 3.5.3.1 Lightning Trip-Out rate of UHV single-circuit lines
  • 3.5.3.2 MTBF of a Large Crossing of the UHV Single-Circuit Line
  • 3.5.3.3 Lightning Trip-Out Rate of the UHV Double-Circuit Line
  • 3.5.3.4 Examples of Calculating the Lightning Withstand Rate of UHV AC Power Transmission Lines
  • 3.6 Insulation Coordination
  • 3.6.1 General
  • 3.6.2 Principles and Methods of Insulation Coordination
  • 3.6.3 Selection of Air Gap on Overhead Power Transmission Line Tower
  • 3.6.4 Selection of Air Gaps in a UHV Substation
  • 3.6.5 Insulation Coordination and Insulation Level of UHV Electrical Equipment
  • 4 External Insulation Characteristics of UHV AC Power Transmission Lines
  • 4.1 Power Frequency Voltage Discharge Characteristics
  • 4.2 Switching Impulse Discharge Characteristics
  • 4.2.1 Effect of Wavefront Time
  • 4.2.2 Effect of Gap Size
  • 4.2.3 Effect of Gap Structure
  • 4.2.4 Study on Air Gaps of Substations
  • 4.2.5 Test on Phase-to-Phase Gap
  • 4.3 Lightning Impulse Discharge Characteristics
  • 4.4 Altitude Correction
  • 4.5 Study on the Pollution Flashover Characteristics of an Insulator
  • 4.5.1 Selection of Insulators for UHV AC Lines under Different Pollution Conditions and Altitudes
  • 4.5.1.1 Overview
  • 4.5.1.2 Test on Pollution Flashover Characteristics of Insulators for a UHV AC Transmission Line
  • 4.5.2 Analysis of Factors Bearing Up on the Pollution Flashover Characteristics of Insulators
  • 4.5.2.1 Types of Salts
  • 4.5.3 Nonsoluble Deposit Density (NSDD)
  • 4.5.4 Uneven Distribution of Pollution on the Top and Bottom Surfaces of Insulators
  • 4.5.5 Insulation Configuration Recommended for a 1000-kV UHV AC Line
  • 4.5.5.1 Analytical Method for Insulation Configuration
  • 4.5.5.2 Relation Between Number of Insulators in a String and Pollution Flashover Voltage
  • 4.5.5.3 Determination of Number of Insulators for a 1000-kV Transmission Line with the Pollution Withstand Method
  • 5 UHVAC Substation and Main Electrical Equipment
  • 5.1 Main Electrical Connection of UHVAC Substations
  • 5.1.1 Common Main Electrical Connection Modes
  • 5.1.2 Main Electrical Connection of UHV Substations
  • 5.1.3 Selection of Switchgears (AIS, HGIS, and GIS)
  • 5.2 UHVAC Transformers
  • 5.3 UHVAC Reactors (Including Controllable HV Shunt Reactors)
  • 5.4 UHVAC Switchgears
  • 5.4.1 Basic Requirements
  • 5.4.2 Structures and Characteristics
  • 5.4.3 Grounding Grid and Interphase Circulating Current of UHV GIS/HGIS
  • 5.4.4 Test of UHV Switchgears
  • 5.5 UHVAC Surge Arresters
  • 5.5.1 Overview
  • 5.5.2 Main Performance Parameters
  • 5.5.3 Porcelain Type Surge Arresters
  • 5.5.4 Tank Type Surge Arresters for GIS
  • 5.6 UHVAC Bushings
  • 5.6.1 UHV Transformer Bushings
  • 5.6.2 UHV GIS Bushings
  • 5.6.2.1 Main Technical Parameters
  • 5.6.2.2 Structure and Design Considerations
  • 5.7 UHVAC Transformers
  • 5.7.1 UHV Voltage Transformers
  • 5.7.2 UHV Current Transformers
  • 5.8 LV Reactive Power Compensation Equipment
  • 5.8.1 Configuration Principles
  • 5.8.2 Selection of Neutral Point Grounding Mode
  • 5.8.3 Selection of Equipment Insulation Level
  • 5.8.4 Circuit Breakers for Switching Capacitor Banks
  • 6 Electromagnetic Environment of the UHV AC System
  • 6.1 Electromagnetic Environment
  • 6.2 Electromagnetic Environment of Transmission Lines
  • 6.2.1 EME Parameters and Limits of UHV AC Transmission Lines
  • 6.2.1.1 Power Frequency Electric Field
  • 6.2.1.2 Power Frequency Magnetic Field
  • 6.2.1.3 Audible Noise
  • 6.2.1.4 Radio Interference
  • 6.2.2 Calculation Method for EME of UHV AC Transmission Lines
  • 6.2.2.1 Electric Field Strength at the Conductor Surface
  • 6.2.2.2 Power Frequency Electric Field
  • 6.2.2.3 Power Frequency Magnetic Field
  • 6.2.2.4 Audible Noise
  • 6.2.2.5 Radio Interference
  • 6.2.3 Impact of Line Configuration Parameters on EME of UHV AC Transmission Lines
  • 6.2.3.1 Impact of the Configuration of Phase Conductors
  • 6.2.3.2 Effects of Conductor Height above the Ground
  • 6.2.3.3 Effect of Phase-to-Phase Spacing
  • 6.2.3.4 Effects of Phase Sequence
  • 6.2.3.5 Effects of Soil Resistivity
  • 6.2.3.6 Effects of Altitude
  • 6.2.4 EME of UHV AC Transmission Lines
  • 6.2.4.1 Power Frequency Electric Field
  • 6.2.4.2 Power Frequency Magnetic Field
  • 6.2.4.3 Audible Noise
  • 6.2.4.4 Radio Interference
  • 6.3 Electromagnetic Environment of Substations
  • 6.3.1 Power Frequency Electric Field and Magnetic Field of UHV AC Substations
  • 6.3.1.1 Limits on the Power Frequency Electric Field and Magnetic Field of UHV AC Substations
  • 6.3.1.2 Calculation Method of the Power Frequency Electric Field and Magnetic Field in UHV AC Substations
  • 6.3.1.3 Prediction for Distribution of the Power Frequency Electric Field and Magnetic Field in UHV AC Substations
  • 6.3.1.4 Actual Power Frequency Electric Field Strength in UHV AC Substations
  • 6.3.1.5 Actual Power Frequency Magnetic Field Strength in UHV AC Substations
  • 6.3.2 Radio Interference in UHV AC Substations
  • 6.3.2.1 Characteristics of Radio Interference in UHV AC Substations
  • 6.3.2.2 Actual Radio Interference Level in UHV AC Substations
  • 6.3.3 Audible Noise in UHV AC Substations
  • 6.3.3.1 Main Source of Audible Noise in UHV AC Substations
  • 6.3.3.2 Actual Audible Noise Level in UHV AC Substations
  • 7 UHV AC Transmission Lines
  • 7.1 Tower Foundation
  • 7.1.1 Types
  • 7.1.1.1 Foundation by Excavation and Backfill
  • 7.1.1.2 Excavated Foundation
  • 7.1.1.3 Rock Foundation
  • 7.1.1.4 Pile Foundation
  • 7.1.1.5 Composite Foundation
  • 7.1.2 Design and Optimization of Foundations
  • 7.1.2.1 Design of Foundations
  • 7.1.2.2 Optimization of Foundation Design
  • 7.1.2.3 Environmental Protection and Water and Soil Conservation
  • 7.2 Towers
  • 7.2.1 Tower Types
  • 7.2.1.1 Tower Types in Foreign Countries
  • 7.2.2 UHV AC Towers in China
  • 7.2.2.1 Design Principles and Major Technical Characteristics
  • 7.2.2.2 Tower Planning
  • 7.2.3 Design and Optimization of UHV Towers
  • 7.2.3.1 Design Principle
  • 7.2.3.2 Selection of Structural Loads
  • 7.2.3.3 Optimization of Tower Design
  • 7.3 Conductors, Ground Wires, and OPGW of Lines
  • 7.3.1 Selection of Conductors
  • 7.3.1.1 Selection of Cross-sections and Bundle Configurations
  • 7.3.1.2 Calculation of the Electromagnetic Environment
  • 7.3.1.3 Comparison of Mechanical Property
  • 7.3.1.4 Economic Comparison
  • 7.3.1.5 Altitude Correction
  • 7.3.1.6 Summary
  • 7.3.2 Selection of Ground Wires and OPGW
  • 7.3.2.1 Basic Requirements for Selection of Ground Wires and OPGW for UHV Projects
  • 7.3.2.2 Basic Principles of Selection of Ground Wires
  • 7.3.2.3 Requirements of Selection of OPGW
  • 7.3.2.4 Selection of OPGW Scheme
  • 7.3.2.5 Comparison and Analysis of Optical Fiber Cables and Recommendations
  • 7.3.2.6 Selection of Ground Wire (Current Division Line)
  • 7.3.2.7 Summary
  • 7.4 Vibration of Overhead Transmission Line Conductors
  • 7.4.1 General
  • 7.4.1.1 Cause of Vibration
  • 7.4.1.2 Hazard of Aeolian Vibration
  • 7.4.2 Mechanism of Aeolian Vibration
  • 7.4.2.1 Cause of Aeolian Vibration
  • 7.4.2.2 Factors That Maintain Aeolian Vibration
  • 7.4.2.3 Self-Limit Effect of Vibration Amplitude
  • 7.4.2.4 Mathematical Model of Aeolian Vibration of Conductors and Ground Wires
  • 7.4.2.5 Safe Level of Aeolian Vibration of Conductors and Ground Wires
  • 7.4.3 Antivibration Measures for Ordinary Lines
  • 7.4.3.1 Antivibration Devices for Ordinary Lines
  • 7.4.3.2 Antivibration for Conductors in Ordinary UHV Lines
  • 7.4.3.3 Antivibration for Ground Wires in UHV Ordinary Lines
  • 7.4.4 Antivibration for Large Crossing Lines
  • 7.4.4.1 Characteristics of Aeolian Vibration of Large Crossing Lines
  • 7.4.4.2 Varieties of Antivibration Scheme for Large Crossing Lines
  • 7.4.4.3 Design Method of Antivibration for Large Crossing Lines
  • 7.4.5 Aeolian Vibration Test for Large Crossing Lines
  • 7.4.5.1 Principle of Aeolian Vibration Test
  • 7.4.5.2 Wind Power Curve
  • 7.4.5.3 Test Method for Aeolian Vibration of Conductors
  • 7.4.5.4 Results of Aeolian Vibration Test
  • 8 UHV AC Field Test
  • 8.1 Hand-Over Test of Equipment
  • 8.1.1 General Requirements on Hand-Over Test of 1000-kV UHV Electrical Equipment
  • 8.1.2 Field Hand-Over Test Items and Technologies of 1000-kV AC Electrical Equipment
  • 8.1.3 Hand-Over Test Items of 1000-kV Power Transformer
  • 8.1.4 Hand-Over Test Items of Other Main UHV AC Equipment
  • 8.2 System Commissioning Test
  • 8.2.1 Test Items and Objectives
  • 8.2.2 Switching Overvoltage Test
  • 8.2.3 Transient Current Test
  • 8.2.4 Electromagnetic Environment (EME) Test
  • 8.2.5 AC Electrical Parameters and Harmonic Test
  • II. DC
  • 9 General
  • 9.1 Overview of HVDC Transmission Development
  • 9.1.1 Overview of International DC Transmission Development
  • 9.1.2 Overview of DC Transmission Development in China
  • 9.1.2.1 Technical Preparations
  • 9.1.2.2 DC Transmission Project
  • 9.1.2.3 Studies on DC Transmission Technologies and Localization of DC Equipment
  • 9.2 Advantages of UHV DC Transmission
  • 9.2.1 DC Transmission
  • 9.2.2 UHV DC Transmission
  • 9.2.2.1 Line Loss Rate
  • 9.2.2.2 Investment
  • 9.2.2.3 Economical Operation
  • 9.3 Prospects for UHV DC Transmission
  • 9.3.1 Development of UHV DC Transmission
  • 9.3.2 Prospect of UHV DC Transmission in China
  • 10 Technology of a UHVDC Converter
  • 10.1 Structure of the Converter
  • 10.1.1 Connection Scheme of the Converter
  • 10.1.1.1 Basic Converter Unit
  • 10.1.1.2 Main Considerations in Converter Connection
  • 10.1.1.3 Configuration of an ±800-kV UHVDC Converter
  • 10.1.1.4 Configuration of a ±1000-kV UHVDC Converter
  • 10.1.2 Bypass Circuit Breaker
  • 10.1.3 Smoothing Reactor and its Arrangement
  • 10.1.3.1 Main Functions of a Smoothing Reactor
  • 10.1.3.2 Selection of Smoothing Reactor Parameters
  • 10.1.3.3 Arrangement of Smoothing Reactors
  • 10.1.3.4 Effects of the Arrangement of a Smoothing Reactor on the Magnitude of the Steady-State Operating Voltage of a Conv...
  • 10.2 Working Principle of a DC Converter
  • 10.2.1 Six-Pulse Rectifier
  • 10.2.1.1 Ideal No-Load DC Voltage of an Uncontrolled Rectifier
  • 10.2.1.2 Ideal No-Load DC Voltage of a Controlled Rectifier
  • 10.2.1.3 DC Voltage of a Controlled Rectifier (L?>0)
  • 10.2.1.4 Operational Characteristics of a Rectifier
  • 10.2.2 Six-Pulse Inverter
  • 10.2.2.1 Schematic and Basic Operating Conditions
  • 10.2.2.2 Operating Characteristics of an Inverter
  • 10.2.3 Twelve-Pulse Converter
  • 10.2.3.1 Basic Composition and Schematic
  • 10.2.3.2 Main Advantages
  • 10.2.3.3 Operational Characteristics
  • 10.2.3.4 Major Differences between a 12-Pulse Converter and a six-Pulse Converter
  • 10.2.4 Double 12-Pulse Converter
  • 10.2.4.1 Basic Composition and Schematic of a Complete Monopole Converter
  • 10.2.4.2 Operating Characteristics
  • 10.2.4.3 Entrance/Exiting of a UHVDC 12-Pulse Converter
  • 10.3 Higher-Power DC Converter Valves
  • 10.3.1 History of DC Converter Valves
  • 10.3.2 Functions and Working Principles
  • 10.3.3 Characteristics of a UHVDC Converter Valve
  • 10.3.4 Performance Requirements of the System on a UHVDC Converter Valve
  • 11 Steady-State Characteristics of UHVDC Transmission
  • 11.1 Ratings of DC Transmission
  • 11.1.1 Rated DC Power
  • 11.1.2 Rated DC Current
  • 11.1.3 Rated DC Voltage
  • 11.2 Minimum DC Transmission Power
  • 11.2.1 Minimum DC Transmission Power and Minimum DC Current
  • 11.2.1.1 Minimum DC Current
  • 11.2.1.2 Critical Value of Continuous Current
  • 11.2.1.3 Minimum DC Transmission Power
  • 11.2.2 Effect of Reduced Voltage Operation on Minimum DC Current
  • 11.3 DC Transmission Overload
  • 11.3.1 Provisions Regarding DC Transmission System Overload
  • 11.3.2 Overload Capability of a DC Transmission System
  • 11.3.2.1 Continuous Overload
  • 11.3.2.2 Short-Time Overload
  • 11.3.2.3 Temporary Overload
  • 11.3.3 Relevant Factors Affecting Overload Capability of a DC Transmission System
  • 11.3.3.1 Ambient Temperature
  • 11.3.3.2 Equipment Characteristics
  • 11.3.3.3 Harmonic Interference and Reactive Power Demand
  • 11.4 Operation of a DC Transmission System at Reduced Voltage
  • 11.4.1 Causes of Reduced Voltage Operation
  • 11.4.1.1 Insulation Problems of Relevant Equipment
  • 11.4.1.2 Need for Reactive Power Control
  • 11.4.2 Rating of Reduced Voltage Operation
  • 11.4.3 Methods to Reduce DC Operating Voltage
  • 11.4.3.1 Increase Firing Angle of the Converters
  • 11.4.3.2 Regulate On-Load Tap Changer (OLTC) of a Converter Transformer
  • 11.4.3.3 Voltage Regulation by Generator
  • 11.4.3.4 Block One Converter Unit of a Complete Monopole
  • 11.4.3.5 Reduced Voltage Operation Mode used in the Xiangjiaba-Shanghai UHVDC Project
  • 11.4.3.6 Issues Requiring Attention during Transfer between Full-Voltage Operation and Reduced-Voltage Operation
  • 11.5 Reversal of DC Power Transmission
  • 11.5.1 Power Reversal as well as Configuration and Relevant Parameters of Converter Stations
  • 11.5.1.1 Mechanism of Reversal of DC Power Transmission
  • 11.5.1.2 Requirements Placed by Power Reversal on Configuration and Relevant Parameters of Converter Stations
  • 11.5.2 Types of Power Reversal
  • 11.5.2.1 Normal Power Reversal
  • 11.5.2.2 Emergency Power Reversal
  • 11.5.3 Method and Time of Power Reversal
  • 11.5.3.1 Swapping of Settings of the Current Regulator
  • 11.5.3.2 Power Reversal by Control System in a Predetermined Order
  • 11.5.3.3 Time of Power Reversal
  • 11.6 Steady-State Operating Characteristics of DC Transmission Projects
  • 11.6.1 External Operating Characteristic of Converters
  • 11.6.1.1 Control Modes of Converter
  • 11.6.1.2 External Characteristics of Converters in the Case of a Combination of Different Control Modes
  • 11.6.2 Active Power Transmitted and Reactive Power Consumed by a Converter and its Power Characteristic
  • 11.6.2.1 Active Power Transmitted by a Converter
  • 11.6.2.2 Reactive Power Consumed by a Converter
  • 11.6.2.3 Power Characteristic of a Converter
  • 11.7 Operating Mode of a DC Transmission System
  • 11.7.1 Operation Configurations
  • 11.7.1.1 Monopolar DC Transmission System
  • 11.7.1.2 Bipolar DC Transmission Project
  • 11.7.2 Operation at Full Voltage or Reduced Voltage
  • 11.7.3 Normal and Reversed Power Transmission
  • 11.7.4 Balanced and Unbalanced Bipolar Operation
  • 11.7.4.1 Balanced Bipolar Operation Mode
  • 11.7.4.2 Unbalanced Bipolar Operation Mode
  • 11.7.4.3 Transmission Capacity Under Major Operation Modes
  • 11.7.5 Control Mode of a DC Transmission Project
  • 11.7.5.1 Active Power Control Mode
  • 11.7.5.2 Reactive Power Control Mode
  • 11.7.6 Ice Preventing and Deicing Operation Mode of DC Lines
  • 11.7.6.1 Icing Disasters in Power Systems and Countermeasures
  • 11.7.6.2 Basic Deicing Methods for Transmission Lines
  • 11.7.6.3 Ice Preventing and Deicing Methods for UHVDC Systems
  • 11.8 Loss of a DC Transmission System
  • 11.8.1 Loss of Converter Stations
  • 11.8.1.1 Characteristics and Classification of Losses of the Converter Station
  • 11.8.1.2 Calculation Method of Loss of the Converter Station
  • 11.8.1.3 Loss of Main Equipment in Converter Stations
  • 11.8.2 Loss of DC Transmission Lines
  • 11.8.2.1 Corona Loss
  • 11.8.2.2 Resistance Loss
  • 11.8.3 Loss of an Electrode System
  • 12 Control and Protection of UHVDC Transmission Systems
  • 12.1 Configuration Requirements of the Control System
  • 12.1.1 Redundancy of the Control System
  • 12.1.2 Hierarchical Structure of the Control System
  • 12.2 Firing Phase Control of the Converter
  • 12.2.1 Equal Delay Angle Control
  • 12.2.2 Equidistant Control
  • 12.3 Basic Control and Regulation Principles of DC Systems
  • 12.4 Control of UHV Converters
  • 12.4.1 Basic Control Modes of Converters
  • 12.4.2 Basic Controls of Converters
  • 12.5 Control of the UHVDC System
  • 12.6 Online Switching-In/Out of UHVDC Converter Units
  • 12.6.1 Online Switching-In Strategy of Converter Units
  • 12.6.2 Online Switching-Out Strategy of Converter Units
  • 12.7 Fault Modes of UHVDC Transmission Systems
  • 12.7.1 UHV Converter Faults
  • 12.7.1.1 Short Circuit Faults of Converter Valves
  • 12.7.1.2 Commutation Failure of Inverters
  • 12.7.1.3 Short Circuit at the DC-Side Outlet of Converters
  • 12.7.1.4 Phase-to-Phase Short Circuit on the AC Side of Converters
  • 12.7.1.5 Phase-to-Ground Short Circuit on AC Side of Converters
  • 12.7.1.6 Short Circuit to Ground on DC Side of Converters
  • 12.7.1.7 Faults of Control Systems
  • 12.7.1.8 Faults of Converter Cooling Equipment
  • 12.7.2 Faults of UHVDC Switchyard and Electrode
  • 12.7.3 Faults on AC Side of UHV Converter Stations
  • 12.7.4 UHVDC Line Faults
  • 12.8 Protection System of UHVDC Transmission Systems
  • 12.8.1 Configuration Principles and Characteristics of UHVDC Protection Systems
  • 12.8.2 Configuration of UHVDC Protection
  • 12.8.2.1 Converter Protection Zone
  • 12.8.2.2 DC Pole Protection Zone
  • 12.8.2.3 DC Transmission Line Protection Zone
  • 12.8.2.4 DC Bipolar Protection Zone
  • 12.8.2.5 AC Switchyard Protection Zone
  • 13 Reactive Compensation and Harmonic Suppression of UHVDC Systems
  • 13.1 General
  • 13.2 Reactive Power Demand of Converter Stations
  • 13.2.1 Reactive Power Characteristics of Converters
  • 13.2.2 Engineering Calculation Method of Reactive Power Demand of Converters
  • 13.3 Reactive Power Compensation of Converter Stations
  • 13.3.1 Reactive Power-Supporting Capability and Reactive Power Demand of AC Systems
  • 13.3.2 Types of Reactive Power Compensation Equipment
  • 13.3.3 Determination of Capacity of Reactive Power Compensation Equipment
  • 13.3.4 Grouping of Reactive Power Compensation Equipment and Capacity of Each Bank
  • 13.4 Harmonic Characteristics of Converter Stations
  • 13.4.1 Harmonics on the AC Side of Converter Stations
  • 13.4.2 Harmonics on the DC Side of Converter Stations
  • 13.5 Suppression of Harmonics on the AC Side of Converter Stations
  • 13.5.1 Impacts and Hazards of Harmonics on the AC Side
  • 13.5.2 Performance Requirements of AC Filters
  • 13.5.3 Composition of Filters
  • 13.5.4 Relation and Coordination between Reactive Power Compensation and Filtering on the AC Side
  • 13.5.5 Development of AC Filtering Technologies
  • 13.6 Harmonic Suppression on the DC Side of Converter Stations
  • 13.6.1 Impacts and Hazards of Harmonics on the DC Side
  • 13.6.2 Performance Requirements of Filtering Systems
  • 13.6.3 Composition of Filter Systems
  • 13.6.4 Types of DC Filters
  • 13.6.5 DC Active Filters
  • 14 UHVDC System Overvoltage and Insulation Coordination
  • 14.1 Steady-State Voltage
  • 14.2 Configuration and Parameters of Surge Arresters
  • 14.2.1 Basic Principles for Configuration of MOAs
  • 14.2.2 Configuration and Function of MOAs
  • 14.2.3 Operating Characteristics of MOAs and a Basic Method for Selection of their Parameters
  • 14.3 Internal Overvoltage and Protection
  • 14.3.1 Temporary and Switching Overvoltage on the AC side
  • 14.3.1.1 Temporary Overvoltage
  • 14.3.1.1.1 Load Rejection Overvoltage
  • 14.3.1.1.2 Overvoltage Caused by Switching on the Converter Transformer
  • 14.3.1.1.3 Occurrence and Clearing of Temporary Overvoltage During a Ground Fault
  • 14.3.1.2 Switching Overvoltage
  • 14.3.1.2.1 Closing or Reclosing
  • 14.3.1.2.2 Switching on the AC Filter or Capacitor Banks
  • 14.3.1.2.3 Ground Fault and Clearing
  • 14.3.1.2.4 Trip-Out of the Last AC Circuit Breaker
  • 14.3.2 Temporary and Switching Overvoltage on the DC Side
  • 14.3.2.1 Overvoltage Generated on the AC Side
  • 14.3.2.2 Overvoltage on the DC Side
  • 14.3.2.2.1 Emergency Shutdown of DC System
  • 14.3.2.2.2 Commutation Failure (Loss of Pulse)
  • 14.3.2.2.3 Switchover Between DC Connection Modes
  • 14.3.2.2.4 Live Switching of DC Filter
  • 14.3.2.2.5 Short-Circuit Fault on Converter
  • 14.3.2.2.6 DC Pole (Line) Ground Fault
  • 14.4 Lightning Overvoltage and Protection
  • 14.4.1 Lightning Overvoltage of UHVDC Power Transmission Lines and Protection Against It
  • 14.4.1.1 Operation Experience with Faults Resulting from Lightning Strikes on UHVDC Transmission Lines
  • 14.4.1.2 Calculation Method for Lightning Performance of DC Lines
  • 14.4.1.3 Measures for Lightning Protection of UHVDC Lines
  • 14.4.2 Lightning Overvoltage of UHV Converter Stations and Protection Against It
  • 14.4.2.1 Direct Lightning Strike Protection of UHV Converter Stations
  • 14.4.2.2 Protection Against Lightning Intruding Overvoltage at Converter Substations
  • 14.5 Insulation Coordination
  • 14.5.1 Selection of Insulation Level of the Main Equipment in Converter Stations
  • 14.5.2 Selection of Minimum Air Gap in Converter Stations
  • 14.5.3 Selection of Gap Size of Transmission Line Towers
  • 15 External Insulation Characteristics of UHVDC Lines
  • 15.1 DC Discharge Characteristics of Air Gaps
  • 15.2 Impulse Discharge Characteristics of Air Gaps of Transmission Lines
  • 15.2.1 Switching Impulse Discharge Characteristics
  • 15.2.2 Switching Impulse Discharge Characteristics of Air Gaps at the Tower Head
  • 15.2.3 Discharge Characteristics of Air Gaps under the Combination of DC Voltage and Switching Impulse Voltage
  • 15.2.4 Lightning Impulse Discharge Characteristics of Air Gaps at the Tower Head
  • 15.3 Switching Impulse Discharge Characteristics of Air Gaps of Converter Stations
  • 15.4 Altitude Correction
  • 15.5 External Insulation Characteristics of DC Insulators under Pollution Conditions
  • 15.5.1 DC Pollution Tests
  • 15.5.2 Effect of Pollution on DC Pollution Flashover Characteristics of Insulators
  • 15.5.3 Analysis of DC Pollution Level for DC Lines and Converter Stations
  • 15.5.3.1 Converter Stations
  • 15.5.3.2 Along the Line
  • 15.5.4 Study on Selection of External Insulation under Polluted Conditions
  • 15.5.4.1 Pollution Flashover Characteristics of Heavy Insulators
  • 15.5.4.2 Effect of Length of Insulator String on DC Pollution Flashover Characteristics
  • 15.5.4.3 Effect of Type of Insulator Strings on DC Pollution Flashover Characteristics of Insulators
  • 15.5.4.4 Procedures of and Suggestions on the Selection of Insulators for ±800-kV Lines
  • 15.5.5 Analysis of Axternal Insulation Characteristics of Equipment in Converter Stations under Pollution Conditions
  • 15.5.6 External Insulation Maintenance for ±800-kV DC Lines and Converter Stations
  • 15.5.6.1 Summary of Operation Experience with Converter Stations
  • 15.5.6.2 Reliability of Composite Insulators for ±800-kV Lines
  • 16 UHV Converter Stations and the Main Electrical Equipment
  • 16.1 UHVDC Converter Stations
  • 16.1.1 HVDC Converter Stations With a Single 12-Pulse Converter Per Pole
  • 16.1.2 UHVDC Converter Station With Two Series-Connected 12-Pulse Converters Per Pole
  • 16.1.2.1 Electrical Structure
  • 16.1.2.2 Configuration of Valve Halls
  • 16.1.2.3 Layout of Converter Stations
  • 16.1.2.4 Structure and Arrangement of Converter Valves
  • 16.1.2.5 Layout of Converter Transformers
  • 16.1.2.6 Layout of Valve Halls
  • 16.1.2.7 Layout of DC Switchyards
  • 16.1.2.8 Layout of AC Switchyards
  • 16.1.3 UHVDC Converter Stations With Three 12-Pulse Converters Per Pole
  • 16.1.3.1 Electrical Structure
  • 16.1.3.2 Configuration of Valve Halls
  • 16.2 UHVDC Converter Valves
  • 16.2.1 Valve Structure
  • 16.2.2 Valve Design
  • 16.2.2.1 Electrical Design
  • 16.2.2.2 Mechanical Design
  • 16.2.2.3 Aseismic Design
  • 16.2.2.4 Key Components
  • 16.2.3 Valve Test
  • 16.3 Converter Transformers
  • 16.3.1 Functions and Features
  • 16.3.2 Type and Parameter Selection
  • 16.3.2.1 Type Selection
  • 16.3.2.2 Selection of Parameters
  • 16.3.3 R&D of UHV Converter Transformers
  • 16.4 UHVDC Smoothing Reactors
  • 16.4.1 Functions
  • 16.4.2 Structural Characteristics
  • 16.4.3 Tests
  • 16.4.3.1 Routine Test of Dry-Type UHV Smoothing Reactor With Air Core
  • 16.4.3.2 Type Test of Dry-Type UHV Smoothing Reactor With Air Core
  • 16.4.3.3 Field Test of a Dry-Type UHV Smoothing Reactor With Air Core
  • 16.4.3.4 Routine Test of an Oil-Immersed Type UHV Smoothing Reactor With Iron Core
  • 16.4.3.5 Type Test of Oil-Immersed Type UHV Smoothing Reactor With Iron Core
  • 16.4.3.6 Field Test of Oil-Immersed Type UHV Smoothing Reactor With Iron Core
  • 16.5 UHVDC Arresters
  • 16.5.1 Characteristics
  • 16.5.1.1 Diversity in Type, Performance, and Parameters
  • 16.5.1.2 Higher Protection Level
  • 16.5.1.3 High Energy Absorption Capacity
  • 16.5.1.4 Complex Continuous Operating Voltage Conditions
  • 16.5.1.5 Complex Structure
  • 16.5.1.6 External Insulation and Pollution
  • 16.5.2 Key Performance and Design Features
  • 16.5.2.1 R&D of DC Varistors
  • 16.5.2.2 Current Sharing by Paralleling Multiple Varistor Columns
  • 16.5.2.3 Temporary Overvoltage Withstand Capability
  • 16.5.3 Testing
  • 16.5.3.1 Protection Level (Residual Voltage Test)
  • 16.5.3.2 Accelerated Aging Test
  • 16.5.3.3 Energy Withstand Test
  • 16.5.3.4 Operating Duty Test
  • 16.5.3.5 Current-Sharing Characteristic Test
  • 16.5.3.6 Pollution Test
  • 16.5.3.7 Type Test Items
  • 16.6 UHVDC Bushings
  • 16.6.1 Structural Style of UHVDC Bushings
  • 16.6.2 Design of UHVDC Bushings
  • 16.7 UHVDC Filters
  • 16.8 UHVDC Measuring Instruments
  • 17 Electromagnetic Environment of UHVDC Systems
  • 17.1 Electromagnetic Environment
  • 17.1.1 EME of UHVDC Transmission Lines
  • 17.1.2 EME of UHV Converter Stations
  • 17.1.3 EME of Earth Electrodes in UHVDC Transmission Projects
  • 17.2 EME of Transmission Lines
  • 17.2.1 EME Parameters and Limits of UHVDC Transmission Lines
  • 17.2.1.1 Electric Field Strength and Ion Current Density
  • 17.2.1.2 Magnetic Flux Density
  • 17.2.1.3 Audible Noise
  • 17.2.1.4 Radio Interference
  • 17.2.2 Calculation Methods for EME of UHVAC Transmission Lines
  • 17.2.2.1 Calculation Method of Electric Field Strength on Conductor Surfaces
  • 17.2.2.2 Calculation Method of Resultant Electric Field Strength and Ion Current Density
  • 17.2.2.3 Calculation Methods of Audible Noises
  • 17.2.2.4 Calculation Methods of Radio Interferences
  • 17.2.3 Impact of Line Configuration on EME of UHVDC Transmission Lines and Control Measures
  • 17.2.3.1 Impact of Number and Cross-Sectional Area of Subconductors
  • 17.2.3.2 Impact of Spacing of Subconductors
  • 17.2.3.3 Impact of Pole Conductor Height
  • 17.2.3.4 Impact of Spacing of Pole Conductors
  • 17.3 EME of Converter Stations
  • 17.3.1 Electric and Magnetic Fields of Converter Stations
  • 17.3.2 Radio Interference of UHVDC Converter Stations
  • 17.3.3 Audible Noise of UHVDC Converter Stations
  • 17.3.3.1 Characteristics of Audible Noise in Converter Stations
  • 17.3.3.2 Audible Noise Limit for Converter Stations
  • 17.3.3.3 Prediction of Audible Noise of Converter Stations
  • 17.3.3.4 Noise Control Measures for Converter Stations
  • 17.4 EME of Earth Electrodes
  • 17.4.1 Type of DC Earth Electrodes
  • 17.4.2 Environmental Impact Factors and Limits of Earth Electrodes
  • 17.4.3 Distribution Characteristics of Earth Potential and Step Voltage of Earth Electrodes
  • 17.4.4 Measures to Improve the Earth Electrode Environment of UHVDC Projects
  • 17.4.5 Environmental Impact Level of UHVDC Earth Electrodes
  • 18 UHVDC Transmission Lines
  • 18.1 Tower Foundations
  • 18.1.1 Overview
  • 18.1.2 Common Types of Foundations
  • 18.1.2.1 Foundation by Excavation and Backfill
  • 18.1.2.2 Excavated Foundations
  • 18.1.2.3 Rock Foundations
  • 18.1.2.4 Pile Foundations
  • 18.1.2.5 Composite Foundations
  • 18.1.3 Connection between Tower Structure and Foundation
  • 18.1.4 Design and Optimization of Foundations
  • 18.1.5 Principles and Requirements for the Type Selection of Foundations
  • 18.1.6 Environmental Protection and Water and Soil Conservation
  • 18.2 Towers
  • 18.2.1 Tower Types
  • 18.2.1.1 Analysis of Tower Types
  • 18.2.1.2 Selection of Tower Type
  • 18.2.2 Structural Loads
  • 18.2.2.1 Analysis of Structure Reliability
  • 18.2.2.2 Selection of Structural Loads
  • 18.2.3 Optimization of Towers
  • 18.3 Conductors, Ground Wires, and OPGW of Lines
  • 18.3.1 Control Parameters for Selection of Conductors
  • 18.3.2 Basis and Conditions for Selection of Conductors
  • 18.3.3 Selection of Conductors
  • 18.3.3.1 Principles of Selection
  • 18.3.3.2 Selection of Conductors in Light- and Medium-Icing Areas
  • 18.3.3.3 Selection of Conductors in Heavy-Icing Areas
  • 18.3.4 Selection of Ground Wire
  • 18.3.4.1 Main Principles
  • 18.3.4.2 Corona Requirements
  • 18.3.4.3 Type of Ground Wire
  • 18.3.4.4 Selection of Ordinary Ground Wire
  • 18.3.4.5 Ground Wire in Heavy-Icing Areas
  • 18.3.5 Selection of OPGW
  • 18.3.5.1 Common Structures
  • 18.3.5.2 OPGWs of Ordinary Lines
  • 18.3.5.3 Selection of OPGW in Heavy-Icing Areas
  • 18.4 Vibration of Line Conductors
  • 18.4.1 Aeolian Vibration of UHVDC Transmission Lines
  • 18.4.1.1 Mechanism and Hazards of Aeolian Vibration
  • 18.4.1.2 Antivibration Measures for Ordinary Lines
  • 18.4.1.3 Antivibration for Large-Crossing Lines
  • 18.4.2 Galloping of UHVDC Transmission Lines
  • 18.4.2.1 General
  • 18.4.2.2 Analysis of the Characteristics of Common Antigalloping Technologies
  • 18.4.2.3 Analysis of Antigalloping Technologies for ±800-kV DC Transmission Lines
  • 18.4.2.4 Double-Pendulum Antigalloping Devices
  • 18.4.2.5 Detuning Spacers
  • 18.4.2.6 Antigalloping Design of ±800-kV DC Transmission Lines
  • 18.5 Fittings
  • 18.5.1 Spacers
  • 18.5.1.1 Type of Spacers
  • 18.5.1.2 Structure of Spacers
  • 18.5.1.3 Mechanical Properties of Spacers
  • 18.5.1.4 Arrangement of Subspan
  • 18.5.2 Suspension Yoke Plates
  • 18.5.3 Tower-Connecting Fittings
  • 18.5.4 Suspension Clamps
  • 18.5.5 Jumpers
  • 18.5.5.1 Aluminum Tube Rigid Jumper Fittings
  • 18.5.5.2 Squirrel-Cage Rigid Jumper Fittings
  • 18.5.6 Grading and Shielding Technologies
  • 19 UHVDC Field Tests
  • 19.1 Hand-Over Test of Equipment
  • 19.1.1 General
  • 19.1.2 Hand-Over Test of DC Primary Equipment
  • 19.1.3 Hand-Over Test of DC Secondary Equipment
  • 19.1.4 Field Partial Discharge Test of Converter Transformers
  • 19.1.4.1 Partial Discharge Test of Converter Transformers under AC Voltage
  • 19.1.4.2 Partial Discharge Test of Converter Transformers under DC Voltage
  • 19.2 Station System Commissioning Tests
  • 19.2.1 General
  • 19.2.2 Sequence Operation Test
  • 19.2.3 Trip Test
  • 19.2.4 Charging Test of a Converter Transformer Connected to a Converter
  • 19.2.5 OLT of Converter Transformers (Without Line)
  • 19.2.6 OLT of Converters with Line
  • 19.2.7 Antiinterference Test
  • 19.3 System Commissioning Tests
  • 19.3.1 General
  • 19.3.2 System Commissioning Items
  • 19.3.2.1 Test Items of Monopolar Systems
  • 19.3.2.2 Initial Operation Tests with Power Forward Transmission
  • 19.3.2.3 Protection Trips with Power Forward Transmission
  • 19.3.2.4 Steady-State Operating/System Monitoring Function Check and Test with Power Forward Transmission
  • 19.3.2.5 Joint Current Control Test with Power Forward Transmission under Steady-State Operation
  • 19.3.2.6 Joint Power Control Test with Power Forward Transmission under Steady-State Operation
  • 19.3.2.7 Separate Current Control Test with Communication Fault and Under Normal Operation
  • 19.3.2.8 Normal Voltage and Reduced Voltage Operation Test with Power Forward Transmission
  • 19.3.2.9 Reactive Power Control Test with Power Forward Transmission
  • 19.3.2.10 Transfer between Ground Return and Metallic Return
  • 19.3.2.11 Initial Operation Test with Reversed Power Transmission
  • 19.3.2.12 Power Control Test with Reversed Power Transmission
  • 19.3.2.13 Pulse Loss Test with Power Forward Transmission
  • 19.3.2.14 Disturbance Test
  • 19.3.2.15 Test for Remote Control and Standby Panel Operation
  • 19.3.2.16 Joint Power Control Test with Power Forward Transmission
  • 19.3.2.17 Test of Pole Current Control
  • 19.3.2.18 Hot Run Test
  • 19.3.2.19 Operation Test at Full Voltage/Reduced Voltage with Power Forward Transmission
  • 19.3.2.20 Reactive Power Control Test with Power Forward Transmission
  • 19.3.2.21 Reactive Power Control Test with Reversed Power Transmission
  • 19.3.2.22 Test Items for Bipolar Systems
  • 19.3.3 Test Items during System Commissioning
  • 19.3.3.1 AC Electrical Quantity and AC/DC Harmonic Test
  • 19.3.3.2 Transient Voltage/Transient Current Test
  • 19.3.3.3 Electromagnetic Environment (EME) Test
  • References
  • AC References
  • DC References
  • Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

153,51 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen