Theory and Calculation of Heat Transfer in Furnaces

 
 
Academic Press
  • 1. Auflage
  • |
  • erschienen am 13. April 2016
  • |
  • 350 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-801041-9 (ISBN)
 
Theory and Calculation of Heat Transfer in Furnaces covers the heat transfer process in furnaces, how it is related to energy exchange, the characteristics of efficiency, and the cleaning of combustion, providing readers with a comprehensive understanding of the simultaneous physical and chemical processes that occur in boiler combustion, flow, heat transfer, and mass transfer.
  • Covers all the typical boilers with most fuels, as well as the effects of ash deposition and slagging on heat transfer
  • Combines mature and advanced technologies that are easy to understand and apply
  • Describes basic theory with real design that is based on meaningful experimental data


He has experience both in teaching and industry application in the field of combustion engineering for more than 15 years. His researching fields include:
1. Municipal Solid Waste (MSW) Incineration and its pollution control.
2. Biomass combustion and generate electricity power.
3. Wood coal pyrolysis and gasification.
4. Waste Heat Recovery Technologies R&D.
5. Horizontal fluidized bed boiler R&D
  • Englisch
  • San Diego
  • |
  • USA
Elsevier Science
  • 12,70 MB
978-0-12-801041-9 (9780128010419)
012801041X (012801041X)
weitere Ausgaben werden ermittelt
  • Cover
  • Title Page
  • Copyright Page
  • Contents
  • Foreword
  • Preface
  • Symbols
  • Superscripts
  • Subscripts
  • Chapter 1 - Theoretical Foundation and Basic Properties of Thermal Radiation
  • 1.1 - Thermal radiation theory-Planck's Law
  • 1.2 - Emissive power and radiation characteristics
  • 1.2.1 - Description of Radiant Energy
  • 1.2.2 - Physical Radiation Characteristics
  • 1.2.3 - Monochromatic and Directional Radiation
  • 1.3 - Basic laws of thermal radiation
  • 1.3.1 - Planck's Law and Corollaries
  • 1.3.2 - Lambert's Law
  • 1.3.3 - Kirchhoff's Law
  • 1.4 - Radiativity of solid surfaces
  • 1.4.1 - Difference Between Real Surfaces and Blackbody Surfaces
  • 1.4.2 - Graybody
  • 1.4.3 - Diffuse Surfaces
  • 1.5 - Thermal radiation energy
  • 1.5.1 - Thermal Radiation Forms
  • 1.5.2 - Radiosity
  • 1.6 - Radiative geometric configuration factors
  • 1.6.1 - Definition of the Configuration Factor
  • 1.6.2 - Configuration Factor Properties
  • 1.6.3 - Configuration Factor Calculation
  • 1.7 - Simplified treatment of radiative heat exchange in engineering calculations
  • 1.7.1 - Simplification Treatment of Radiation Heat Transfer in Common Engineering Calculations
  • 1.7.2 - Discussion on Simplified Conditions
  • Chapter 2 - Emission and Absorption of Thermal Radiation
  • 2.1 - Emission and absorption mechanisms
  • 2.1.1 - Molecular Spectrum Characteristics
  • 2.1.2 - Absorption and Radiation of Media
  • 2.2 - Radiativity of absorbing and scattering media
  • 2.2.1 - Absorbing and Scattering Characteristics of Media
  • 2.2.1.1 - Absorption
  • 2.3 - Scattering
  • 2.4 - Absorption and Scattering of Flue Gas
  • 2.4.1 - Radiation Intensity Characteristics
  • 2.4.1.1 - Transmission and Absorption of Radiant Energy
  • 2.4.1.2 - Classifying the Absorbing Medium
  • 2.4.2 - Exchange and Conservation of Radiant Energy
  • 2.4.2.1 - Differential Volume Radiation
  • 2.4.2.2 - Radiation Transfer Equation
  • 2.4.2.3 - Energy Balance Equation
  • 2.4.2.4 - Approximate Solution for Radiation Transfer Equation
  • 2.4.3 - Mean Beam Length, Absorptivity, and Emissivity of Media
  • 2.4.3.1 - Average Transmissivity and Absorptivity
  • 2.4.3.2 - Mean Beam Length
  • 2.4.3.3 - Calculating the Mean Beam Length
  • 2.4.4 - Gas Absorptivity and Emissivity
  • 2.4.5 - Flue Gas and Flame Emissivity
  • 2.4.5.1 - Emissivity of Flue Gas Containing Ash
  • 2.4.5.2 - Luminous Flame Emissivity
  • 2.4.5.3 - Coal Flame Emissivity
  • Chapter 3 - Radiation Heat Exchange Between Isothermal Surfaces
  • 3.1 - Radiative heat exchange between surfaces in transparent media
  • 3.1.1 - Radiative Heat Transfer of a Closed System Composed of Two Surfaces
  • 3.1.2 - Radiation Transfer of a Closed System Composed of Multiple Surfaces
  • 3.1.3 - Hole Radiative Heat Transfer
  • 3.1.4 - Radiative Heat Transfer of Hot Surface, Water Wall, and Furnace Wall
  • 3.2 - Radiative heat exchange between an isothermal medium and a surface
  • 3.2.1 - Heat Transfer Between a Medium and a Heating Surface
  • 3.2.2 - Heat Transfer Between a Medium and a Furnace
  • 3.2.3 - Calculating Radiative Heat Transfer According to Projected Heat
  • 3.3 - Radiative heat exchange between a flue gas and a heating surface with convection
  • Chapter 4 - Heat Transfer in Fluidized Beds
  • 4.1 - Fundamental concepts of fluidized beds
  • 4.1.1 - Definition and Characteristics of Fluidized Beds
  • 4.1.2 - Basic CFB Boiler Structure
  • 4.1.3 - Different Types of CFB Boilers
  • 4.1.4 - CFB Boiler Characteristics
  • 4.2 - Convective heat transfer in gas-solid flow
  • 4.2.1 - Two-Phase Flow Heat Transfer Mechanism
  • 4.2.2 - Factors Impacting Two-Phase Heat Transfer
  • 4.2.3 - Two-Phase Flow Convective Heat Transfer
  • 4.3 - Radiative heat transfer in gas-solid flow
  • 4.4 - Heat transfer calculation in a circulating fluidized bed
  • 4.4.1 - Influence of Heating Surface Size on Heat Transfer
  • 4.4.2 - CFB Boiler Gas Side Heat Transfer Coefficient
  • Chapter 5 - Heat Transfer Calculation in Furnaces
  • 5.1 - Heat transfer in furnaces
  • 5.1.1 - Processes in the Furnace
  • 5.1.2 - Classification of Heat Transfer Calculation Methods
  • 5.1.3 - Furnace Heat Transfer Calculation Equation
  • 5.1.4 - Flame Temperature
  • 5.2 - Heat transfer calculation in suspension-firing furnaces
  • 5.2.1 - Gurvich Method
  • 5.2.2 - Calculation Method Instructions
  • 5.2.3 - Furnace Heat Transfer Calculation Examples
  • 5.3 - Heat transfer calculation in grate furnaces
  • 5.3.1 - Heat Transfer Calculation in Grate Furnaces in China
  • 5.3.2 - Heat Transfer Calculation in Grate-Firing Furnaces
  • 5.4 - Heat transfer calculation in fluidized bed furnaces
  • 5.4.1 - Heat Transfer Calculation in Bubbling Fluidized Bed (BFB) Furnaces
  • 5.4.2 - CFB Furnace Structure and Characteristics
  • 5.4.3 - Heat Transfer Calculation in CFB Furnaces
  • 5.5 - Heat transfer calculation in back-end heating surfaces
  • 5.5.1 - Basic Heat Transfer Equations
  • 5.5.2 - Heat Transfer Coefficient
  • 5.6 - Thermal calculation of the boiler
  • 5.6.1 - Basic Definitions of Boiler Heating Surfaces
  • 5.6.2 - Thermal Calculation Methods for Boilers
  • 5.6.3 - Thermal Calculation According to Different Furnace Types
  • Chapter 6 - Effects of Ash Deposition and Slagging on Heat Transfer
  • 6.1 - Ash deposition and slagging processes and characteristics
  • 6.1.1 - Deposition and Slagging
  • 6.1.2 - Formation and Characteristics of Deposition and Slagging
  • 6.1.3 - Damage of Deposition and Slagging
  • 6.1.4 - Ash Composition
  • 6.2 - Effects of ash deposition and slagging on heat transfer in furnaces
  • 6.2.1 - Heat Transfer Characteristics and Ash Layer Calculation with Slagging
  • 6.2.2 - Heat Transfer Calculation with Deposition and Slagging
  • 6.3 - Effects of ash deposition and slagging on heat transfer in convective heating surfaces
  • 6.3.1 - Effects of Severe Ash Deposition and Slagging
  • 6.3.2 - Basic Heat Transfer Equation for Convective Heating Surfaces
  • 6.3.3 - Coefficients Evaluating the Ash Deposition Effect
  • Chapter 7 - Measuring Heat Transfer in the Furnace
  • 7.1 - Flame emissivity measurement
  • 7.1.1 - Bichromatic Optical Pyrometer
  • 7.1.2 - Auxiliary Radiative Resources
  • 7.2 - Radiative flux measurement
  • 7.2.1 - Conductive Radiation Heat Flux Meter
  • 7.2.2 - Capacitive Radiation Heat Flux Meter
  • 7.2.3 - Calorimetric Radiation Heat Flux Meter
  • 7.3 - Two other types of heat flux meter
  • 7.3.1 - Heat Pipe Heat Flux Meter
  • 7.3.2 - Measuring Local Heat Transfer Coefficient in CFB Furnaces
  • Appendix A - Common Physical Constants of Heat Radiation
  • Appendix B - Common Configuration Factor Calculation Formulas
  • Appendix C - Example of Thermal Calculation of 113.89 kg/s (410 t/h) Ultra-High-Pressure, Coal-Fired Boiler
  • C1 - Design requirement
  • C2 - Fuel characteristics
  • C3 - Basic boiler structure
  • C4 - Auxiliary calculation
  • C5 - Combustion chamber and heat transfer calculation
  • C6 - Superheater design and heat exchange calculation
  • C7 - Heat distribution
  • C8 - Economizer structure design and thermal calculation
  • C9 - Air preheater structure design and thermal calculation
  • C10 - Main thermal calculation parameters in summary
  • Appendix D - Supplementary Materials
  • D1 - Fuel
  • D2 - The basis of fuel composition
  • D2.1 - The Basis of Fuel Composition Analysis
  • D2.2 - Conversion of Composition Basis
  • D3 - Air amount for fuel combustion
  • D3.1 - Theoretical Air Amount for Fuel Combustion
  • D3.2 - Actual Air Amount for Fuel Combustion
  • D4 - Combustion products
  • D4.1 - Theoretical Volume of Combustion Products
  • D4.2 - Actual Volume of Combustion Products
  • D5 - Enthalpy-temperature table
  • D5.1 - Enthalpy of Combustion Products
  • D5.2 - Compiling the Enthalpy-Temperature Table
  • D6 - Supplementary information for Appendix C
  • D6.1 - C1.6, 4.3, 4.7 Thermal Load and Other Related Data for Solid Slag Pulverized Coal Furnaces
  • D6.2 - C2.Note The Excess Air Coefficient at the Platen Superheater Exit
  • D6.3 - C2.Note Air Leakage Factor of the Heating Surface
  • D6.4 - C3.Note The Basis of Omitting Fly Ash Enthalpy
  • D6.5 - C4.9 Heat Loss Due to Surface Radiation and Convection
  • D6.6 - C4.10 Ash Physical Heat Loss
  • D6.7 - C5.1 Recommended Values of Furnace Volume Thermal Load (kW/m3)
  • D6.8 - C5.3 Furnace Thermal Load
  • D6.9 - C5.13, C5.14, C5.15, C5.39 Length and Dip Angle of Furnace Nose
  • D6.10 - C5.18, C10.7, C10.11 Mass Flux of Working Medium in Platen Superheater Tubes
  • D6.11 - C5.23 Transverse Spacing of Platen Superheater Panels
  • D6.12 - C5.29, 31 Longitudinal Spacing of Platen Superheater Tubes
  • D6.13 - C5.30 Minimum Bending Radius of Platen Superheater
  • D6.14 - C5.35 Gas Velocity at furnace exit
  • D6.15 - C7.4 Air Leakage Factor of Pulverized Coal System
  • D6.16 - C7.13 Mean Diameter of Ash Particles
  • D6.17 - C7.23 Radiation Extinction Coefficient of Coke Particles
  • D6.18 - C7.24 Dimensionless Value x1
  • D6.19 - C7.25 Dimensionless Value x2
  • D6.20 - C7.29 Fouling Factor of Water Wall
  • D6.21 - C7.35, 7.37 ?x for Calculation of Relative Coefficient at Flame Center
  • D6.22 - C8.14 Water Wall Configuration Factor
  • D6.23 - C9.17 Coefficient Considering the Effect of Reradiation on the Fouling Factor
  • D6.24 - C9.19, C9.72 Distribution Coefficient of Thermal Load
  • D6.25 - C9.27 Radiation Fuel Correction Coefficient
  • D6.26 - C9.41, C11.54, C11.59, C13.33 Correction Factor for Tube Diameter Cd
  • D6.27 - C9.47, C9.48, C11.19, C11.20, C11.21, C13.22, C13.23, C18.22, C18.23, C20.21, C20.22, C22.37, C22.38, C24.36, C24.3...
  • D6.28 - C9.49, C11.21, C13.24, C18.24, C20.23, C22.39, C24.38 Average Prantl of Flue Gas and Air
  • D6.29 - C9.51, C11.23, C13.26 Correction Factor for Tube Rows
  • D6.30 - C9.53, C11.25, C13.28 Correction Factor for the Geometric Arrangement of Tube Bundles
  • D6.31 - C9.55, 9.59 Ash Deposition Coefficient and Utilization Coefficient
  • D6.32 - C9.56 Tube Wall Fouling Emissivity
  • D6.33 - C11.64, C13.38, C15.17 Ash Deposition Coefficient
  • D6.34 - C11.75, C13.47, C18.40, C20.39 Fuel Correction Coefficient
  • D6.35 - C11.79, C13.51 Effective Coefficient
  • D6.36 - C18.28, C20.27, C22.48, C24.47 Correction Factor for the Tube Row Number
  • D6.37 - C18.42, C20.41 Basic Ash Deposition Coefficient e0 Values
  • D6.38 - C18.43, C20.42 Additional Correction Factor ?e Values for Ash Deposition
  • D6.39 - C18.44, C20.43 Correction Factor for Tube Diameter
  • D6.40 - C22.22, C24.21 Temperature Difference Correction Coefficient
  • D6.41 - C22.34, C24.33 Correction Factor for Tube Length
  • D6.42 - C22.35, C24.34 Correction Factor for Temperature/Composition
  • D6.43 - C22.36, C24.35 Correction Factor of Flue Gas Temperature and Wall Temperature
  • D6.44 - C22.49, C24.48 Correction Factor for Flue Gas Temperature/Composition
  • D6.45 - C22.52, C24.51 Utilization Coefficient
  • References
  • Subject Index
  • Back cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

128,52 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok