Science and Principles of Biodegradable and Bioresorbable Medical Polymers

Materials and Properties
 
 
Woodhead Publishing
  • 1. Auflage
  • |
  • erschienen am 22. September 2016
  • |
  • 476 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
978-0-08-100393-0 (ISBN)
 

Science and Principles of Biodegradable and Bioresorbable Medical Polymers: Materials and Properties provides a practical guide to the use of biodegradable and bioresorbable polymers for study, research, and applications within medicine. Fundamentals of the basic principles and science behind the use of biodegradable polymers in advanced research and in medical and pharmaceutical applications are presented, as are important new concepts and principles covering materials, properties, and computer modeling, providing the reader with useful tools that will aid their own research, product design, and development.

Supported by practical application examples, the scope and contents of the book provide researchers with an important reference and knowledge-based educational and training aid on the basics and fundamentals of these important medical polymers.


  • Provides a practical guide to the fundamentals, synthesis, and processing of bioresorbable polymers in medicine
  • Contains comprehensive coverage of material properties, including unique insights into modeling degradation
  • Written by an eclectic mix of international authors with experience in academia and industry
  • Englisch
  • Cambridge
Elsevier Science
  • 12,53 MB
978-0-08-100393-0 (9780081003930)
0081003935 (0081003935)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Science and Principles of Biodegradable and Bioresorbable Medical Polymers
  • Related titles
  • Science and Principles of Biodegradable and Bioresorbable Medical Polymers: Materials and Properties
  • Copyright
  • Contents
  • List of contributors
  • Woodhead Publishing Series in Biomaterials
  • 1 - Biodegradable medical polymers: fundamental sciences
  • 1.1 Introduction
  • 1.1.1 Polymers configuration and 'soft' and 'stiff' polymer concept
  • 1.1.2 Intra- and inter- molecular interactions
  • 1.1.3 The concept of polymer chain 'segment' and glass transition temperature
  • 1.1.4 Melting and crystallisation temperatures Tm and Tc
  • 1.1.5 Polymer molecular weight and its meanings
  • 1.1.6 Mechanical properties of polymers - nanomechanics consideration
  • 1.1.7 Fracture mechanics of polymers
  • 1.2 Biodegradable polymer chain structures
  • 1.2.1 Biodegradable natural polymers
  • 1.2.1.1 Polysaccharides
  • 1.2.1.2 Bacterial polyesters (refer Chapter 8 for details)
  • 1.2.1.3 Proteins and peptides
  • 1.2.2 Synthetic biodegradable biopolymers
  • 1.2.2.1 Poly(lactic acid) (refer Chapter 2 for detailed discussion)
  • 1.2.2.2 Synthetic poly(amino acids)
  • 1.2.2.3 Triacylglycerol-based polymers
  • 1.3 Physical properties of biodegradable polymers
  • 1.3.1 Natural polymers
  • 1.3.2 Synthetic biopolymers
  • 1.4 Biodegradable polymers in solid state
  • 1.5 Biodegradable polymers in solutions
  • 1.6 Biodegradable polymer hybrids
  • 1.7 Materials selection and design control for medical applications
  • 1.7.1 Guideline for material selection
  • 1.7.2 Design control - regulation consideration
  • 1.7.2.1 Design and development planning
  • 1.7.2.2 Design input
  • 1.7.2.3 Design output
  • 1.7.2.4 Design review
  • 1.7.2.5 Design verification/validation
  • 1.7.2.6 Design transfer
  • 1.7.2.7 Design change
  • 1.7.2.8 Design history file
  • 1.8 Summary - key points learnt in the chapter
  • References
  • One - Biodegradable and bioresorbable synthetic medical polymers
  • 2 - Synthetic biodegradable medical polyesters
  • 2.1 Introduction
  • 2.2 Synthesis methods and structure-properties
  • 2.2.1 Synthesis mechanisms
  • 2.3 Physico-chemical properties
  • 2.4 Degradation of poly(lactic acid) and poly(glycolic acid) polymers
  • 2.4.1 Hydrolytic degradation
  • 2.4.1.1 Degradation kinetics
  • 2.4.1.2 Internal autocatalytic degradation
  • 2.4.1.3 The effect of polymer morphology on degradation
  • 2.4.1.4 The effect of stereocomplexation on degradation
  • 2.4.1.5 The effect of poly(lactic acid) configuration on degradation
  • 2.4.1.6 Effect of chemical composition on degradation
  • 2.4.1.7 Effect of specimen size and porosity on degradation
  • 2.4.1.8 Effect of drug loading on degradation
  • 2.4.2 Enzymatic degradation
  • 2.5 Case studies for biomedical and pharmaceutical applications
  • 2.5.1 Surgical sutures and implants
  • 2.5.2 Drug delivery systems
  • 2.6 Future trends
  • References
  • 3 - Synthetic biodegradable medical polyesters: poly-e-caprolactone
  • 3.1 Introduction
  • 3.2 Chemical structure and methods for producing poly-e-caprolactone
  • 3.2.1 Polycondensation
  • 3.2.2 Ring-opening polymerisation
  • 3.2.3 Common catalysts and initiators for ring-opening polymerisation
  • 3.3 Processing techniques of poly-e-caprolactone
  • 3.3.1 Electro-spinning
  • 3.3.2 3D printing: melt-plotting technique
  • 3.4 Mechanical properties and degradation of poly-e-caprolactone-based biomaterials
  • 3.4.1 Mechanical properties
  • 3.4.2 Degradation properties
  • 3.5 Surface functionalisation of poly-e-caprolactone and poly-e-caprolactone biological properties
  • 3.6 Case studies of medical applications
  • 3.7 Commercialisation and future trends of poly-e-caprolactone-based biomaterials
  • 3.8 Summary - key points learnt in the chapter
  • Acknowledgement
  • References
  • 4 - Synthetic biodegradable medical polyesters: poly(trimethylene carbonate)
  • 4.1 Introduction
  • 4.2 Synthesis and structure-properties
  • 4.2.1 Synthesis of poly(trimethylene carbonate) via copolymerisation of epoxides with CO2
  • 4.2.2 Synthesis of poly(trimethylene carbonate) by ring-opening polymerisation
  • 4.2.2.1 Cationic polymerisation
  • 4.2.2.2 Anionic polymerisation, organo-catalytic systems
  • 4.2.2.3 Coordination polymerisation
  • 4.2.2.4 Enzymatic polymerisation
  • 4.2.3 Properties of poly(trimethylene carbonate)
  • 4.3 Degradation of poly(trimethylene carbonate) and copolymers
  • 4.3.1 Poly(trimethylene carbonate) homopolymer
  • 4.3.2 Poly(trimethylene carbonate)-poly(lactic acid) copolymers
  • 4.3.3 Poly(trimethylene carbonate)-polyglycolide copolymers
  • 4.3.4 Poly(trimethylene carbonate)-poly(e-caprolactone) copolymers
  • 4.3.5 Poly(trimethylene carbonate)-based terpolymers
  • 4.4 Biomedical and pharmaceutical applications
  • 4.4.1 Copolymers based on trimethylene carbonate and lactide
  • 4.4.2 Copolymers based on trimethylene carbonate and glycolide
  • 4.4.3 Terpolymers based on l-lactide, glycolide, and trimethylene carbonate
  • 4.5 Conclusion and perspectives
  • References
  • 5 - Synthetic biodegradable medical polymer: polyanhydrides
  • 5.1 Introduction
  • 5.2 Historical perspective
  • 5.3 Classification of polyanhydrides and chemical structures
  • 5.3.1 Conventional polyanhydrides
  • 5.3.1.1 Aliphatic polyanhydrides
  • 5.3.1.2 Unsaturated polyanhydrides
  • 5.3.1.3 Aromatic polyanhydrides
  • 5.3.1.4 Aliphatic aromatic polyanhydrides
  • 5.3.1.5 Polymer blends
  • 5.3.2 Advanced polyanhydrides
  • 5.3.2.1 Cross-linked polyanhydrides
  • 5.3.2.2 Poly(ester-anhydride) polymers
  • 5.3.2.3 Fatty acid-based polyanhydrides
  • 5.3.2.4 Amino acid-based polyanhydrides
  • 5.3.2.5 Poly(anhydride-co-imides)
  • 5.3.2.6 Polyanhydrides with polyethylene glycol functionality
  • 5.4 Methods of synthesis
  • 5.4.1 Melt polycondensation
  • 5.4.2 Solution polymerisation
  • 5.4.3 Dehydrative coupling
  • 5.4.4 Ring-opening polymerisation
  • 5.4.5 Rapid synthesis by microwave polymerisation
  • 5.5 Processing techniques
  • 5.5.1 Drug incorporation
  • 5.5.1.1 Compression moulding
  • 5.5.1.2 Melt moulding
  • 5.5.1.3 Solvent casting
  • 5.5.1.4 Hot-melt microencapsulation
  • 5.5.1.5 Solvent removal microencapsulation
  • 5.5.1.6 Spray drying microencapsulation
  • 5.6 Degradation mechanism
  • 5.6.1 In vitro degradation and erosion of polyanhydrides
  • 5.6.2 In vivo degradation and elimination of polyanhydrides
  • 5.7 Biocompatibility
  • 5.8 Medical applications of polyanhydrides
  • 5.8.1 Immunomodulation
  • 5.8.2 Protein and peptides delivery
  • 5.8.3 Tissue engineering
  • 5.8.4 Drug delivery systems
  • 5.8.5 Gene delivery systems
  • 5.9 Future trends
  • 5.10 Summary
  • References
  • 6 - Synthetic biodegradable medical polyurethanes
  • 6.1 Introduction
  • 6.2 Synthesis methods of polyurethanes
  • 6.2.1 Polyurethane chemistry
  • 6.2.2 Reagents
  • 6.2.2.1 Macrodiols
  • 6.2.2.2 Isocyanates
  • 6.2.2.3 Chain extenders
  • 6.2.3 Synthesis methods
  • 6.3 Degradable and biocompatibile polyurethanes: selection of block constituents
  • 6.4 Main general applications of degradable polyurethanes in regenerative medicine and drug release
  • 6.4.1 Scaffolds for tissue engineering
  • 6.4.1.1 Biomimetic mechanical properties
  • 6.4.1.2 Biomimetic composition
  • 6.4.1.3 Biomimetic scaffold architecture
  • 6.4.2 PURs as drug delivery carriers
  • 6.5 Future trends
  • 6.6 Summary - key points learnt in the chapter
  • Acknowledgements
  • References
  • 7 - Synthetic biodegradable medical polymers: polymer blends
  • 7.1 Introduction
  • 7.2 Thermodynamics and nanophase diagram of biodegradable polymer blends
  • 7.2.1 Hildebrand solubility parameter
  • 7.2.1.1 Meaning of the Hildebrand solubility parameter
  • 7.2.1.2 Measurement and estimation of solubility parameters
  • 7.2.1.3 Calculation of solubility parameters
  • 7.2.2 Flory-Huggins theory
  • 7.2.2.1 Meaning of the Flory-Huggins interaction parameter
  • 7.2.2.2 Relationship between Flory-Huggins interaction parameter and solubility parameters
  • 7.2.3 Phase separation thermodynamics of polymer blends
  • 7.2.3.1 The physical meaning of N?AB
  • 7.2.4 General phase separation diagram of blends made of block copolymers
  • 7.3 Biodegradable polymer blends
  • 7.3.1 Basic structure of biodegradable medical polymers
  • 7.3.1.1 Polyglycolide (also refer Chapters 1 and 2Chapter 1Chapter 2)
  • 7.3.1.2 Polylactide (also refer Chapters 1 and 2Chapter 1Chapter 2)
  • 7.3.1.3 Polydioxanone
  • 7.3.1.4 Poly(trimethylene carbonate) (also refer Chapter 4)
  • 7.3.1.5 Polycaprolactone (also refer Chapters 1 and 3Chapter 1Chapter 3)
  • 7.3.2 New concepts of biodegradable polymer blends
  • 7.3.3 Effect of interaction parameters and molecular weight on phase separation
  • 7.3.3.1 Physical meaning of the Ncl and Ncp
  • 7.3.4 Poly(lactic-co-glycolic acid)
  • 7.3.5 Poly(lactide-co-ethylene glycol)
  • 7.3.6 Poly(lactide-co-?-caprolactone)
  • 7.3.7 Biodegradable polymer hybrids (Zhang, 2014)
  • 7.4 Case studies of medical applications
  • 7.4.1 Case study 1: development of biodegradable vascular stent
  • 7.4.2 Case study 2: film coating formed by biodegradable polymer blends for controlled drug release
  • 7.5 Future trends
  • 7.6 Summary - key points learnt in the chapter
  • References
  • Two - Biodegradable and bioresorbable natural medical polymers
  • 8 - Natural bacterial biodegradable medical polymers: polyhydroxyalkanoates
  • 8.1 Introduction
  • 8.1.1 History
  • 8.2 Types of polyhydroxyalkanoates and their properties
  • 8.2.1 Biosynthesis of polyhydroxyalkanoates
  • 8.2.1.1 Short chain length-polyhydroxyalkanoates
  • 8.2.1.2 Medium chain length-polyhydroxyalkanoates
  • 8.2.2 Polyhydroxyalkanoate synthases
  • 8.2.3 Polyhydroxyalkanoate producers
  • 8.2.4 Polyhydroxyalkanoate blends
  • 8.3 Degradation of polyhydroxyalkanoates
  • 8.4 Applications of polyhydroxyalkanoates
  • 8.4.1 Medical applications
  • 8.4.2 Industrial applications
  • 8.5 Future trends
  • 8.6 Summary - key points learnt in the chapter
  • References
  • 9 - Natural biodegradable medical polymers: cellulose
  • 9.1 Introduction
  • 9.2 Types and chemical structure of cellulose
  • 9.3 Degradation mechanisms
  • 9.3.1 Hydrolytic mechanism
  • 9.3.2 Acid degradation mechanisms
  • 9.3.3 Base degradation mechanisms
  • 9.4 Processing techniques
  • 9.5 Case studies: cellulose application in medical applications
  • 9.6 Future trends
  • 9.7 Summary - key points learnt in the chapter
  • References
  • 10 - Natural bacterial biodegradable medical polymers: bacterial cellulose
  • 10.1 Introduction
  • 10.2 Types and chemical structure of bacterial cellulose
  • 10.2.1 Chemistry and properties
  • 10.2.2 Two allomorphs coexist in nature
  • 10.3 Processing techniques
  • 10.3.1 Strains producing cellulose
  • 10.3.1.1 Culture medium
  • 10.3.1.2 Degradation of bacterial cellulose
  • 10.3.2 Purification of bacterial cellulose
  • 10.4 Case studies of medical applications
  • 10.4.1 Skin therapy
  • 10.4.2 Artificial blood vessels
  • 10.4.3 Potential scaffold for tissue engineering
  • 10.4.4 Wound care products
  • 10.4.5 Tablet modification
  • 10.5 Future trends
  • 10.6 Summary - key points learnt in the chapter
  • References
  • Further reading
  • 11 - Natural biodegradable medical polymers: therapeutic peptides and proteins
  • 11.1 Introduction
  • 11.2 Structure and bioactive properties of food proteins/peptides
  • 11.2.1 Protein/peptide structures
  • 11.2.2 Bioactivities of food proteins/peptides
  • 11.2.2.1 Antioxidant proteins/peptides
  • 11.2.2.2 Antimicrobial proteins/peptides
  • 11.2.2.3 Anti-inflammatory proteins/peptides
  • 11.3 Instability of proteins/peptides
  • 11.4 Oral delivery of proteins/peptides
  • 11.4.1 Why oral delivery?
  • 11.4.2 Nanoparticle-based carriers for oral delivery
  • 11.4.2.1 Polymeric nanoparticles
  • 11.4.2.2 Liposome and lipid nanoparticles
  • 11.4.3 Colon-specific delivery
  • 11.5 Medical applications of nisin, a food preservation additive
  • 11.6 Future trends
  • 11.7 Summary - key points learnt in the chapter
  • References
  • 12 - Natural biodegradable medical polymers: silk
  • 12.1 Introduction
  • 12.2 Types and chemical structure of silk
  • 12.2.1 Fibroin
  • 12.2.2 Sericin
  • 12.3 Processing techniques of silk
  • 12.3.1 Degumming of sericin
  • 12.3.2 Dissolution of fibroin
  • 12.3.3 Sericin recovery
  • 12.4 Mechanical properties
  • 12.5 Degradation mechanisms
  • 12.5.1 Fibroin degradation
  • 12.5.2 Sericin degradation
  • 12.6 Medical applications
  • 12.6.1 Biocompatibility and safety
  • 12.6.2 Case studies
  • 12.7 Future trends
  • 12.8 Summary - key points learnt in the chapter
  • References
  • Three - Properties of biodegradable medical polymers
  • 13 - Biocompatibility of biodegradable medical polymers
  • 13.1 Introduction: definitions of biocompatibility
  • 13.2 Chemical compatibility
  • 13.2.1 Hydrolytic degradation
  • 13.2.2 Oxidation degradation
  • 13.2.3 Enzymatic degradation
  • 13.3 Mechanical compatibility
  • 13.4 Interactions between degradable polymers and biological systems
  • 13.5 Design principles to ensure biocompatibility for medical applications
  • 13.5.1 Naturally occurring polymers
  • 13.5.2 Synthetic polymers
  • 13.6 Summary - key points learnt in the chapter
  • References
  • 14 - Degradation characterisation of biodegradable polymers
  • 14.1 Introduction
  • 14.2 In vitro characterisation of degradation studies
  • 14.3 Effect of isotope on degradation rate
  • 14.4 New imaging technology for degradation studies
  • 14.4.1 Synchrotron micro-computed tomography
  • 14.4.2 Magnetic resonance imaging
  • 14.5 Mechanical characterisation
  • 14.5.1 Tensile and shear properties
  • 14.5.2 Fracture toughness measurement
  • 14.6 Summary - key points learnt in the chapter
  • References
  • 15 - Modelling degradation of biodegradable polymers
  • 15.1 Introduction
  • 15.2 Diffusion kinetics - Fick's law and water diffusion modelling
  • 15.3 Computer modelling of polymer degradation
  • 15.3.1 Parameter definition
  • 15.3.2 Fundamental concepts
  • 15.3.2.1 Long polymer chains and short oligomer chains
  • 15.3.2.2 Polymer molecular weight (Mi), number average molecular weight (Mn)
  • 15.3.2.3 Rate equation
  • 15.3.2.4 Short-chain diffusion
  • 15.3.2.5 Assumptions
  • 15.3.3 Polyester degradation mechanism
  • 15.3.4 Computer modelling for polyesters - hydrolysis reaction
  • 15.3.4.1 Computer modelling for polyesters - end chain scissions and random chain scissions
  • 15.3.4.2 Computer modelling for polyesters - oligomer diffusion
  • 15.3.5 A summary of governing equations and the non-dimensionalised system
  • 15.3.6 Size effect and the degradation map
  • 15.3.7 Case studies
  • 15.3.7.1 Case A - an infinite plate
  • 15.3.7.2 Case B - the scaffold design
  • 15.4 Computer modelling of the mechanical property change during biodegradation
  • 15.4.1 An entropy spring model for the degradation of Young's modulus
  • 15.4.2 An effective cavity theory for the degradation of Young's modulus
  • 15.5 Summary - key points learnt in this chapter
  • References
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

226,10 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok