Managing Data From Knowledge Bases: Querying and Extraction

 
 
Springer (Verlag)
  • erschienen am 31. Juli 2018
  • |
  • XIII, 139 Seiten
 
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
E-Book | PDF mit Wasserzeichen-DRM | Systemvoraussetzungen
978-3-319-94935-2 (ISBN)
 

In this book, the authors first address the research issues by providing a motivating scenario, followed by the exploration of the principles and techniques of the challenging topics. Then they solve the raised research issues by developing a series of methodologies. More specifically, the authors study the query optimization and tackle the query performance prediction for knowledge retrieval. They also handle unstructured data processing, data clustering for knowledge extraction. To optimize the queries issued through interfaces against knowledge bases, the authors propose a cache-based optimization layer between consumers and the querying interface to facilitate the querying and solve the latency issue. The cache depends on a novel learning method that considers the querying patterns from individual's historical queries without having knowledge of the backing systems of the knowledge base. To predict the query performance for appropriate query scheduling, the authors examine the queries' structural and syntactical features and apply multiple widely adopted prediction models. Their feature modelling approach eschews the knowledge requirement on both the querying languages and system.

To extract knowledge from unstructured Web sources, the authors examine two kinds of Web sources containing unstructured data: the source code from Web repositories and the posts in programming question-answering communities. They use natural language processing techniques to pre-process the source codes and obtain the natural language elements. Then they apply traditional knowledge extraction techniques to extract knowledge. For the data from programming question-answering communities, the authors make the attempt towards building programming knowledge base by starting with paraphrase identification problems and develop novel features to accurately identify duplicate posts. For domain specific knowledge extraction, the authors propose to use a clustering technique to separate knowledge into different groups. They focus on developing a new clustering algorithm that uses manifold constraints in the optimization task and achieves fast and accurate performance.

For each model and approach presented in this dissertation, the authors have conducted extensive experiments to evaluate it using either public dataset or synthetic data they generated.

1st ed. 2018
  • Englisch
  • Cham
  • |
  • Schweiz
Springer International Publishing
  • 9
  • |
  • 32 farbige Abbildungen, 9 s/w Abbildungen
  • |
  • 9 schwarz-weiße und 32 farbige Abbildungen, Bibliographie
  • 3,89 MB
978-3-319-94935-2 (9783319949352)
10.1007/978-3-319-94935-2
weitere Ausgaben werden ermittelt
1 Introduction.- 2 Cache Based Optimization for Querying Curated Knowledge Bases.- 3 Query Performance Prediction on Knowledge Base.- 4 An Efficient Knowledge Clustering Algorithm.- 5 Knowledge Extraction from Unstructured Data on the Web.- 6 Building Knowledge Bases from Unstructured Data on the Web.- 7 Conclusion.
DNB DDC Sachgruppen

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Wasserzeichen-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Verwenden Sie zum Lesen die kostenlose Software Adobe Reader, Adobe Digital Editions oder einen anderen PDF-Viewer Ihrer Wahl (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie die kostenlose App Adobe Digital Editions oder eine andere Lese-App für E-Books (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nur bedingt: Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Wasserzeichen-DRM wird hier ein "weicher" Kopierschutz verwendet. Daher ist technisch zwar alles möglich - sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

106,99 €
inkl. 5% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen

106,99 €
inkl. 5% MwSt.
Download / Einzel-Lizenz
PDF mit Wasserzeichen-DRM
siehe Systemvoraussetzungen
E-Book bestellen