Dam Failure Mechanisms and Risk Assessment

 
 
John Wiley & Sons Inc (Verlag)
  • 1. Auflage
  • |
  • erschienen am 13. Juni 2016
  • |
  • 499 Seiten
 
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-1-118-55853-9 (ISBN)
 
This book integrates the physical processes of dam breaching and the mathematical aspects of risk assessment in a concise manner
• The first book that introduces the causes, processes and consequences of dam failures
• Integrates the physical processes of dam breaching and the mathematical aspects of risk assessment in a concise manner
• Emphasizes integrating theory and practice to better demonstrate the application of risk assessment and decision methodologies to real cases
• Intends to formulate dam-breaching emergency management steps in a scientific structure
  • Englisch
  • New York
  • |
  • Singapur
  • Für Beruf und Forschung
  • 24,90 MB
978-1-118-55853-9 (9781118558539)
1118558537 (1118558537)
weitere Ausgaben werden ermittelt
  • Title Page
  • Copyright Page
  • Contents
  • Foreword
  • Foreword
  • Preface
  • Acknowledgements
  • About the Authors
  • PART I Dam and Dike Failure Databases
  • Chapter 1 Dams and Their Components
  • 1.1 Classification of Dams
  • 1.2 Constructed Embankment Dams
  • 1.3 Landslide Dams
  • 1.4 Concrete Gravity Dams
  • 1.5 Concrete Arch Dams
  • 1.6 Dikes
  • Chapter 2 Statistical Analysis of Failures of Constructed Embankment Dams
  • 2.1 Database of Failures of Constructed Embankment Dams
  • 2.2 Failure Modes and Processes
  • 2.2.1 Overtopping
  • 2.2.2 Internal Erosion
  • 2.3 Common Causes of Embankment Dam Failures
  • 2.4 Failure of Different Types of Embankment Dams
  • 2.4.1 Analysis of Homogeneous and Composite Earthfill Dams
  • 2.4.2 Analysis of Earthfill Dams with Corewalls
  • Chapter 3 Statistical Analysis of Failures of Landslide Dams
  • 3.1 Database of Failures of Landslide Dams
  • 3.1.1 Locations of Landslide Dams
  • 3.1.2 Formation Times of Landslide Dams
  • 3.1.3 Triggers of Landslide Dams
  • 3.1.4 Types of Landslide
  • 3.1.5 Dam Heights and Lake Volumes
  • 3.2 Stability, Longevity, and Failure Modes of Landslide Dams
  • 3.2.1 Stability of Landslide Dams
  • 3.2.2 Longevity of Landslide Dams
  • 3.2.3 Failure Modes
  • 3.3 Mitigation Measures for Landslide Dams
  • 3.3.1 Stages of Landslide Dam Risk Mitigation
  • 3.3.2 Engineering Mitigation Measures for Landslide Dams
  • 3.3.3 Engineering Measures for the Landslide Dams Induced by the Wenchuan Earthquake
  • 3.3.4 Mitigation Measures for the Tangjiashan Landslide Dam
  • Chapter 4 Statistical Analysis of Failures of Concrete Dams
  • 4.1 Database of Failures of Concrete Dams
  • 4.2 Failure Modes and Processes
  • 4.3 Common Causes of Concrete Dam Failures
  • Chapter 5 Statistical Analysis of Failures of Dikes
  • 5.1 Introduction
  • 5.2 Database of Dike Breaching Cases
  • 5.3 Evaluation of Dike Failure Mechanisms
  • 5.3.1 Most Relevant Failure Mechanisms
  • 5.3.2 Statistics of Observed Failure Mechanisms
  • PART II Dam Failure Mechanisms and Breaching Process Modeling
  • Chapter 6 Internal Erosion in Dams and Their Foundations
  • 6.1 Concepts of Internal Erosion
  • 6.2 Mechanisms of Initiation of Internal Erosion
  • 6.2.1 Concentrated Leak Erosion
  • 6.2.2 Backward Erosion
  • 6.2.3 Contact Erosion
  • 6.2.4 Suffusion
  • 6.3 Initiation of Concentrated Leak Erosion Through Cracks
  • 6.3.1 Causes of Concentrated Leak
  • 6.3.2 Need for Studying Soil Erodibility for Concentrated Leak Erosion
  • 6.3.3 Laboratory Tests on Concentrated Leak Erosion
  • 6.3.4 Factors Affecting Concentrated Leak Erosion
  • 6.3.5 Soil Dispersivity
  • 6.4 Initiation of Backward Erosion
  • 6.4.1 Susceptibility of a Dam or Dike to Backward Erosion
  • 6.4.2 Methods for Assessing Backward Erosion
  • 6.4.3 Formation of a Pipe due to Backward Erosion
  • 6.5 Initiation of Contact Erosion
  • 6.5.1 Fundamental Aspects of Contact Erosion Process
  • 6.5.2 Laboratory Investigation on Contact Erosion
  • 6.5.3 Threshold of Contact Erosion
  • 6.6 Initiation of Suffusion
  • 6.6.1 Control Parameters for Likelihood of Suffusion
  • 6.6.2 Laboratory Testing of Suffusion
  • 6.6.3 Geometrical Criteria for Internal Stability of Soils
  • 6.6.4 Critical Hydraulic Gradients for Suffusion
  • 6.7 Filter Criteria
  • 6.7.1 Functions of Filter
  • 6.7.2 Filter Criteria
  • 6.8 Continuation of Internal Erosion
  • 6.9 Progression of Internal Erosion
  • 6.10 Suggested Topics for Further Research
  • Chapter 7 Mechanics of Overtopping Erosion of Dams
  • 7.1 Mechanics of Surface Erosion
  • 7.1.1 Incipient Motion of Sediment
  • 7.1.2 Sediment Transport
  • 7.2 Determination of Erodibility of Soils
  • 7.2.1 Critical Erosive Shear Stress
  • 7.2.2 Coefficient of Erodibility
  • 7.2.3 Laboratory Tests
  • 7.2.4 Field Tests
  • 7.2.5 Classification of Soil Erodibility
  • 7.3 Characteristics of Overtopping Erosion Failure of Dams
  • 7.3.1 Homogeneous Embankment Dams with Cohesionless Materials
  • 7.3.2 Homogeneous Embankment Dams with Cohesive Materials
  • 7.3.3 Composite Embankment Dams
  • 7.4 Suggested Topics for Further Research
  • Chapter 8 Dam Breach Modeling
  • 8.1 Methods for Dam Breach Modeling
  • 8.2 Dam Breaching Data
  • 8.2.1 Embankment Dam Breaching Data
  • 8.2.2 Landslide Dam Breaching Data
  • 8.2.3 Dike Breaching Data
  • 8.3 Empirical Analysis Methods
  • 8.3.1 Multivariable Regression
  • 8.3.2 Empirical Breaching Parameters for Constructed Embankment Dams
  • 8.3.3 Empirical Breaching Parameters for Landslide Dams
  • 8.3.4 Empirical Breaching Parameters for Dikes
  • 8.3.5 Comparison of Breaching Parameters for Landslide Dams and Constructed Embankment Dams
  • 8.4 Numerical Simulation of Overtopping Erosion
  • 8.4.1 Simplified Physically Based Methods
  • 8.4.2 Detailed Physically Based Methods
  • 8.4.3 Case Studies
  • 8.5 Numerical Simulation of Internal Erosion
  • 8.5.1 Continuum Methods
  • 8.5.2 Particle Level Analysis
  • 8.5.3 Case Studies
  • Chapter 9 Analysis of Dam Breaching Flood Routing
  • 9.1 River Hydraulics
  • 9.1.1 One-dimensional Models
  • 9.1.2 Two-dimensional Models
  • 9.2 Numerical Models for Flood Routing Analysis
  • 9.2.1 One-dimensional Numerical Models
  • 9.2.2 Two-dimensional Numerical Models
  • 9.2.3 Coupling of 1D/2D Numerical Models
  • 9.3 Example - Tangjiashan Landslide Dam Failure
  • 9.3.1 Geometric Information
  • 9.3.2 Dam Breaching Simulation
  • 9.3.3 Boundary and Initial Conditions
  • 9.3.4 Flood Routing Analysis and Results
  • PART III Dam Failure Risk Assessment and Management
  • Chapter 10 Analysis of Probability of Failure of Dams
  • 10.1 Introduction
  • 10.2 Analysis Methods
  • 10.2.1 Failure Modes and Effects Analysis
  • 10.2.2 Event Tree
  • 10.2.3 Fault Tree
  • 10.2.4 First-order Reliability Method/First-order Second-moment Method
  • 10.2.5 Monte Carlo Simulation
  • 10.2.6 Bayesian Networks
  • 10.3 Examples of Probabilistic Analysis of Dam Failure
  • 10.3.1 Probabilistic Analysis of Chinese Dam Distresses
  • 10.3.2 Probabilistic Analysis of the Chenbihe Dam Distresses Using Bayesian Networks
  • Chapter 11 Vulnerability to Dam Breaching Floods
  • 11.1 Concepts of Vulnerability
  • 11.2 Human Vulnerability to Dam Breaching Floods
  • 11.2.1 Human Stability in Flood
  • 11.2.2 Influence Factors
  • 11.2.3 Methods for Evaluating Human Vulnerability Factor in a Flood
  • 11.2.4 Database of Fatalities in Dam/Dike Breaching or Other Floods
  • 11.3 Bayesian Network Analysis of Human Vulnerability to Floods
  • 11.3.1 Bayesian Networks
  • 11.3.2 Building the Bayesian Network for Human Vulnerability
  • 11.3.3 Quantifying the Networks
  • 11.3.4 Validation of the Model
  • 11.4 Damage to Buildings and Infrastructures
  • 11.4.1 Flood Action on Buildings
  • 11.4.2 Models for Building Damage Evaluation
  • 11.4.3 Relationship between Building Damage and Loss of Life
  • 11.5 Suggested Topics for Further Research
  • Chapter 12 Dam Failure Risk Assessment
  • 12.1 Risk and Risk Assessment
  • 12.1.1 Definition of Risk
  • 12.1.2 Risk Management
  • 12.2 Dam Failure Risk Analysis
  • 12.2.1 Scope Definition
  • 12.2.2 Hazards Identification
  • 12.2.3 Identification of Failure Modes
  • 12.2.4 Estimation of Failure Probability
  • 12.2.5 Evaluation of Elements at Risk
  • 12.2.6 Vulnerability Evaluation
  • 12.2.7 Risk Estimation
  • 12.3 Risk Assessment
  • 12.3.1 Risk Tolerance Criteria
  • 12.3.2 ALARP Considerations
  • 12.4 Suggested Topics for Further Research
  • Chapter 13 Dam Failure Contingency Risk Management
  • 13.1 Process of Contingency Risk Management
  • 13.1.1 Observation and Prediction
  • 13.1.2 Decision-making
  • 13.1.3 Warning
  • 13.1.4 Response
  • 13.1.5 Evacuation
  • 13.2 Decision-making Under Uncertainty
  • 13.2.1 Decision Tree
  • 13.2.2 Multi-phase Decision
  • 13.2.3 Influence Diagrams
  • 13.3 Dynamic Decision-Making
  • 13.3.1 Dam Failure Emergency Management
  • 13.3.2 Dynamic Decision-making Framework
  • 13.3.3 Time Series Models for Estimating Dam Failure Probability
  • 13.3.4 Evaluation of the Consequences of Dam Failures
  • 13.3.5 Features of DYDEM
  • 13.4 Suggested Topics for Further Research
  • Chapter 14 Case Study: Risk-based Decision-making for the Tangjiashan Landslide Dam Failure
  • 14.1 Timeline for Decision-making for the Tangjiashan Landslide Dam Failure
  • 14.2 Prediction of Dam Break Probability with Time Series Analysis
  • 14.2.1 Forecasting Inflow Rates
  • 14.2.2 Forecasting Lake Volume
  • 14.2.3 Prediction of Dam Failure Probability
  • 14.3 Simulation of Dam Breaching and Flood Routing
  • 14.3.1 Simulation of Dam Breaching and Flood Routing in Stage 1
  • 14.3.2 Simulation of Dam Breaching and Flood Routing in Stage 2
  • 14.3.3 Simulation of Dam Breaching and Flood Routing in Stage 3
  • 14.4 Evaluation of Flood Consequences
  • 14.4.1 Methodology
  • 14.4.2 Calculated Dam Break Flood Consequences
  • 14.5 Dynamic Decision-making
  • 14.5.1 Methodology
  • 14.5.2 Dynamic Decision-making in Three Stages
  • 14.6 Discussions
  • 14.6.1 Influence of the Value of Human Life
  • 14.6.2 Influence of Failure Mode
  • 14.6.3 Sensitivity of the Minimum Expected Total Consequence
  • PART IV Appendixes: Dam Failure Databases
  • Appendix A Database of 1443 Cases of Failures of Constructed Dams
  • Appendix B Database of 1044 Cases of Failures of Landslide Dams
  • References
  • Index
  • EULA

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

140,99 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok