Energetic Nanomaterials

Synthesis, Characterization, and Application
 
 
Elsevier (Verlag)
  • 1. Auflage
  • |
  • erschienen am 21. Januar 2016
  • |
  • 392 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-802715-8 (ISBN)
 

Energetic Nanomaterials: Synthesis, Characterization, and Application provides researchers in academia and industry the most novel and meaningful knowledge on nanoenergetic materials, covering the fundamental chemical aspects from synthesis to application.

This valuable resource fills the current gap in book publications on nanoenergetics, the energetic nanomaterials that are applied in explosives, gun and rocket propellants, and pyrotechnic devices, which are expected to yield improved properties, such as a lower vulnerability towards shock initiation, enhanced blast, and environmentally friendly replacements of currently used materials.

The current lack of a systematic and easily available book in this field has resulted in an underestimation of the input of nanoenergetic materials to modern technologies. This book is an indispensable resource for researchers in academia, industry, and research institutes dealing with the production and characterization of energetic materials all over the world.


  • Written by high-level experts in the field of nanoenergetics
  • Covers the hot topic of energetic nanomaterials, including nanometals and their applications in nanoexplosives
  • Fills a gap in energetic nanomaterials book publications
  • Englisch
  • San Diego
  • |
  • USA
Elsevier Science
  • 13,80 MB
978-0-12-802715-8 (9780128027158)
0128027150 (0128027150)
weitere Ausgaben werden ermittelt
  • Front Cover
  • ENERGETIC NANOMATERIALS
  • Copyright
  • DEDICATION
  • CONTENTS
  • LIST OF CONTRIBUTORS
  • PREFACE
  • One - Nanoenergetic Materials: A New Era in Combustion and Propulsion
  • 1 INTRODUCTION
  • 2 COMBUSTION OF AL NANOPARTICLES
  • 2.1 Heat Transfer of Nanoparticles
  • 2.2 Effect of Oxide Layer
  • 2.3 Effect on the Burn Rate and Performance of Solid Propellants
  • 2.4 Effect of Nanosized Particles Sintering
  • 3 COMBUSTION OF NANOTHERMITE COMPOSITIONS
  • 3.1 Methods of Preparing MICs
  • 3.2 Understanding the MICs Reactive Mechanisms
  • 4 COMBUSTION OF NANOEXPLOSIVES
  • 4.1 Carbon Nanotube Supported Explosives
  • 4.2 Porous Silicon Impregnated Composites
  • 5 EXPERIMENTAL METHODS TO CHARACTERIZE NANOENERGETIC SYSTEMS PERFORMANCE
  • 6 CONCLUSION
  • ACKNOWLEDGMENTS
  • REFERENCES
  • Two - Fast-Reacting Nanocomposite Energetic Materials: Synthesis and Combustion Characterization
  • 1 INTRODUCTION
  • 2 EFFECT OF FUEL AND OXIDIZER PROXIMITY ON COMBUSTION
  • 2.1 Materials and Sample Preparation
  • 2.2 Flame Propagation Experiments
  • 2.3 Results
  • 3 TUNING COMBUSTION PERFORMANCE OF ENERGETIC NANOCOMPOSITES THROUGH SURFACE FUNCTIONALIZATION OF THE FUELS
  • 3.1 Material Synthesis
  • 3.2 Flame Propagation Experiments
  • 3.3 Thermal Equilibrium Experiments
  • 3.4 Results of Flame Speeds
  • 4 CONCLUSIONS
  • REFERENCES
  • Three - Nanometals: Synthesis and Application in Energetic Systems
  • 1 INTRODUCTION
  • 2 NANOMETALS IN ENERGETIC SYSTEMS
  • 2.1 Nanometals Production, Passivation, and Properties
  • 2.1.1 Nanoaluminum Thermal Characterization
  • 2.1.2 Nanometals' Effect on Energetic Materials Decomposition
  • 2.1.2.1 nMe/HMX
  • 2.1.2.2 nMe/AP
  • 2.1.2.3 nMe/AN
  • 3 IGNITION OF ENERGETIC SYSTEMS CONTAINING NANOALUMINUM
  • 3.1 Ignition by Radiation Heat Flux
  • 3.2 Ignition by Conductive Heat Flux
  • 4 NANOALUMINUM COMBUSTION IN SOLID PROPELLANTS
  • 5 NANOALUMINUM USAGE IN THERMITES
  • 6 NANOALUMINUM IN EXPLOSIVES
  • 7 CONCLUSION
  • ACKNOWLEDGMENT
  • REFERENCES
  • Four - Mechanisms and Microphysics of Energy Release Pathways in Nanoenergetic Materials
  • 1 INTRODUCTION
  • 2 HEAT TRANSFER
  • 3 PHYSICAL RESPONSE OF THE OXIDE SHELL
  • 4 REACTION MECHANISMS
  • 4.1 Gas-Condensed Heterogeneous Reaction
  • 4.2 Condensed Phase Interfacial Reaction and the Loss of Nanostructure
  • 4.3 Melt Dispersion Mechanism
  • 5 CONCLUSION AND FUTURE DIRECTIONS
  • REFERENCES
  • Five - Applications of Nanocatalysts in Solid Rocket Propellants
  • 1 INTRODUCTION
  • 2 IMPACT OF NANOCATALYSTS ON THE THERMAL DECOMPOSITION OF AMMONIUM PERCHLORATE AS OXIDIZER IN SOLID PROPELLANTS [1,2]
  • 2.1 Thermal Decomposition Characteristics of Ammonium Perchlorate
  • 3 IMPACT OF METAL NANOPARTICLES ON THE THERMAL DECOMPOSITION OF AP
  • 3.1 Special Performance of Metal Nanoparticles
  • 3.2 Preparation of Nanoparticle/AP Composites
  • 3.3 Effect of Ni Nanoparticles
  • 3.3.1 Comparison of the Effects of Ni Nanoparticles and Micron-Sized Ni Particles on the Thermal Decomposition of AP
  • 3.3.2 Effect of Nano-Ni Content
  • 3.4 Effect of Cu Nanoparticles
  • 3.4.1 Comparison of the Effects of Cu Nanoparticles and Micron-Sized Cu Particles on the Thermal Decomposition of AP
  • 3.4.2 Effect of Nano-Cu Content
  • 3.5 Effect of Al Nanoparticles [5,11]
  • 3.5.1 Comparison of the Effects of Aluminum Nanoparticles and Micron-Sized Aluminum Particles on the Thermal Decomposition of AP
  • 3.5.2 Effect of Nano-Al Content
  • 4 IMPACT OF METALLIC OXIDE NANOPARTICLES ON THE THERMAL DECOMPOSITION OF AP
  • 4.1 Effect of Fe2O3 Nanoparticles
  • 4.2 Effect of CuO Nanoparticles [15]
  • 4.3 Effect of Co2O3 Nanoparticles
  • 5 IMPACT OF HYDROGEN-STORAGE NANOPARTICLES ON THE THERMAL DECOMPOSITION OF AP
  • 5.1 Effect of LiH nanoparticles (nano-LiH)
  • 5.2 Effect of MgH2 Nanoparticles
  • 5.3 Effect of Mg2NiH4 nanoparticles [16-18]
  • 5.4 Effect of Mg2CuH3 Nanoparticles
  • 6 IMPACT OF NANOCATALYSTS ON THE THERMAL DECOMPOSITION OF AP/HTPB PROPELLANT
  • 6.1 Thermal Decomposition Characteristics of AP/HTPB
  • 7 IMPACT OF METAL NANOPARTICLES ON THE THERMAL DECOMPOSITION OF AP/HTPB [19]
  • 7.1 Effect of Nano-Ni
  • 7.2 Effect of Nano-Cu
  • 7.3 Effect of Nano-Al
  • 8 IMPACT OF HYDROGEN-STORAGE NANOPARTICLES ON THE THERMAL DECOMPOSITION OF AP/HTPB
  • 8.1 Effect of Nano-LiH
  • 8.2 Effect of MgH2 Nanoparticles
  • 8.3 Effect of Mg2NiH4 Nanoparticles
  • 8.4 Effect of Mg2CuH3 Nanoparticles
  • 9 IMPACT OF NANOCATALYSTS ON THE COMBUSTION PERFORMANCE OF AP/HTPB PROPELLANT
  • 9.1 Impact of Nano-Ni
  • 9.2 Impact of Nano-Cu
  • 9.3 Impact of Nano-Al
  • 9.4 Impact of Nano-Fe2O3
  • 10 CONCLUSIONS
  • REFERENCES
  • Six - Nanocoating for Activation of Energetic Metals
  • 1 INTRODUCTION
  • 2 NICKEL-COATED ALUMINUM PARTICLES
  • 3 THERMOANALYTICAL TESTS
  • 4 IGNITION TESTS
  • 5 IRON-COATED ALUMINUM PARTICLES
  • 6 CONCLUSIONS
  • REFERENCES
  • Seven - Nanostructured Energetic Materials and Energetic Chips
  • 1 INTRODUCTION
  • 2 1D NSEMS AND ENERGETIC CHIPS
  • 2.1 Energetic Carbon Nanotubes
  • 2.2 Al/CuO Nanowires
  • 2.3 Al/Ni Nanorods
  • 2.4 Al/Co3O4 Nanowires
  • 3 TWO-DIMENSIONAL NSEMS AND ENERGETIC CHIPS
  • 3.1 Al/Ti Multilayer Film
  • 3.2 Al/Ni Multilayer Film
  • 3.3 Al/CuO Multilayer Film
  • 4 THREE-DIMENSIONAL NSEMS AND ENERGETIC CHIPS
  • 4.1 Energetic Porous Copper
  • 4.2 Energetic Porous Silicon
  • 4.3 Three-Dimensional Fe2O3 Nanoenergetic Materials
  • 5 CONCLUSIONS
  • ACKNOWLEDGMENTS
  • REFERENCES
  • Eight - Combustion Behavior of Nanocomposite Energetic Materials
  • 1 INTRODUCTION
  • 2 NANOSTRUCTURED COMPOSITE HIGH-ENERGY-DENSITY MATERIALS
  • 3 NANOTHERMITES
  • 3.1 Nanothermite Systems: Types and Method of Preparation
  • 3.2 Combustion Characteristics
  • 3.3 Reaction Mechanism
  • 4 CONCLUSIONS
  • ACKNOWLEDGMENTS
  • REFERENCES
  • Nine - Catalysis of HMX Decomposition and Combustion: Defect Chemistry Approach
  • 1 INTRODUCTION
  • 2 EXPERIMENTAL
  • 2.1 Materials
  • 2.2 Methods
  • 2.2.1 Determination of Hydroxyl Groups Concentration on the Surface of Metal Oxides
  • 2.2.2 The Catalytic Activity Evaluation for HMX Thermolysis with Nano-oxides
  • 2.2.3 Burning Rate Measurements
  • 3 RESULTS AND DISCUSSION
  • 3.1 Nano-oxides Characterization
  • 3.2 Effect of Nanosized Oxides on HMX Decomposition
  • 3.2.1 Thermogravimetric Data
  • 3.2.2 Evolved Gases During Decomposition
  • 3.2.3 Heat Effect of Decomposition with Additives
  • 3.3 Influence of Nanosized Oxides on HMX Combustion
  • 3.3.1 HMX Monopropellant Combustion
  • 3.3.2 Catalytic Influence of Nano-TiO2 on HMX Combustion
  • 3.3.3 Kinetic Parameters of HMX Thermolysis with TiO2
  • 3.4 Searching the Key Factors of Nano-oxide Effect on HMX Thermolysis
  • 3.5 Does the "Strength" of the OH Groups Bonding to the Surface Affect the Catalytic Effect?
  • 3.6 Changing the Surface Acidity
  • 4 ELABORATION OF THE PHYSICOCHEMICAL MODEL OF CATALYTIC INFLUENCE OF NANO-TIO2 ON HMX THERMOLYSIS
  • 4.1 Introduction to Defect Chemistry of Titanium Dioxide
  • 4.1.1 Intrinsic Point Defects in TiO2
  • 4.1.2 Extrinsic Point Defects in TiO2
  • 4.1.3 Ionic Space Charge
  • 4.2 Physicochemical Model of the Nano-oxides' Influence on HMX Thermolysis and Combustion
  • 5 SUMMARY
  • ACKNOWLEDGMENT
  • REFERENCES
  • Ten - Preparation, Characterization, and Catalytic Activity of Carbon Nanotubes-Supported Metal or Metal Oxide
  • 1 INTRODUCTION
  • 2 PREPARATION AND CHARACTERIZATION
  • 2.1 Pretreatment of CNTs [12,13]
  • 2.2 CNTs-Supported Metal
  • 2.2.1 Pd/CNTs
  • 2.2.2 Pb/CNTs [14]
  • 2.2.3 NiPd/CNTs
  • 2.2.4 Ag/CNTs
  • 2.3 CNTs-Supported Metal Oxides
  • 2.3.1 CuO/CNTs [16,17]
  • 2.3.2 PbO/CNTs
  • 2.3.2 Bi2O3/CNTs
  • 2.3.4 MnO2/CNTs [20]
  • 2.4 CNTs-supported Metal Oxide Composite
  • 2.4.1 CuO·PbO/CNTs
  • 2.4.2 Cu2O·Bi2O3/CNTs [22]
  • 2.4.3 Bi2O3·SnO2/CNTs
  • 2.4.4 Cu2O·SnO2/CNTs
  • 2.4.5 NiO·SnO2/CNTs
  • 2.4.6 CuO·SnO2/CNTs
  • 3. CATALYTIC ACTIVITY OF CNTS-SUPPORTED CATALYSTS IN THERMAL DECOMPOSITION OF ENERGETIC MATERIALS
  • 3.1 Catalytic Effects on the Thermal Decomposition Reaction of Nitrocellulose Absorbed Nitroglycerin
  • 3.1.1 Effects of CNTs, Nano-CuO and CuO/CNTs on the Thermal Decomposition Behavior of Nitrocellulose Absorbed Nitroglycerin [16]
  • 3.1.2 Effect of Other CNTs-Supported Catalysts on the Thermal Decomposition Behavior of NC-NG
  • 3.1.3 Nonisothermal Decomposition Reaction Kinetics of Mixture of NC-NG and Catalysts
  • 3.2 Catalytic Effects of Ag/CNTs on the Thermal Decomposition Reaction of Hexogen
  • 3.3 Catalytic Effects on the Thermal Decomposition Reaction of Ammonium Perchlorate
  • 3.4 Catalytic Effects on the Thermal Decomposition Reaction of N-guanylurea-dianitramide [17,25]
  • 3.4.1 Effects of CuO Content in CuO/CNTs on the Thermal Behavior of Guanylurea-dianitramide (GUDN)
  • 3.4.2 Catalytic Effects of CuO/CNTs with Different Addition Amounts on Thermal Behavior of GUDN
  • 3.4.3 Nonisothermal Decomposition Reaction Kinetics
  • 3.4.4 Catalytic Mechanism Analysis
  • 4. APPLICATION IN SOLID ROCKET PROPELLANTS
  • 4.1 Design and Preparation of Formulations
  • 4.2 Effect of CNTs-supported Catalysts on Combustion Properties of DB Propellants
  • 4.3 Effect of CNTs-Supported Catalysts on Combustion Properties of CMDB Propellants
  • 5 CONCLUSIONS
  • REFERENCES
  • Eleven - Formation of Nanosized Products in Combustion of Metal Particles
  • 1 INTRODUCTION
  • 1.1 Aluminum and Its Oxide Al2O3
  • 1.2 Titanium and Its Oxide TiO2
  • 2 EXPERIMENTAL TECHNIQUES FOR PARTICLE SAMPLING
  • 2.1 Flow-through Bomb for Sampling the Condensed Combustion Products of Metallized Compositions
  • 2.2 Petryanov Filter
  • 2.3 Aerosol Impactor
  • 2.4 Diffusion Aerosol Spectrometer
  • 2.5 Vacuum Sampler
  • 2.6 Thermophoretic Precipitator
  • 3 ORIGINAL EXPERIMENTAL APPROACHES
  • 3.1 Preparation of Monodisperse Agglomerate Particles
  • 3.2 Chamber with Nozzle for Particle Acceleration
  • 3.3 Video Microscopy in Aerosol Optical Cell of Millikan Type
  • 4 CHARACTERISTICS OF OXIDE NANOPARTICLES
  • 4.1 Aluminum Oxide Al2O3
  • 4.2 Titanium Oxide TiO2
  • 5 CONCLUSIONS AND FUTURE WORK
  • ACKNOWLEDGMENTS
  • REFERENCES
  • Twelve - Encapsulated Nanoscale Particles and Inclusions in Solid Propellant Ingredients
  • 1 ENCAPSULATED NANOSCALE CATALYSTS
  • 2 ENGINEERED METALLIC FUELS AND ALLOYS
  • 3 COMPOSITES OF NANOSCALE ALUMINUM PARTICLES
  • 4 MICROMETER-SIZED ALUMINUM PARTICLES WITH INCLUSIONS
  • 5 MICROEXPLODING ALLOY FUEL PARTICLES
  • 6 CONCLUSIONS
  • ACKNOWLEDGMENTS
  • REFERENCES
  • Thirteen - Pre-burning Characterization of Nanosized Aluminum in Condensed Energetic Systems
  • NOMENCLATURE
  • CHEMICALS COMMON NAMES AND IUPAC NOMENCLATURE
  • 1 INTRODUCTION
  • 2 TESTED ALUMINUM POWDERS: PRODUCTION, PASSIVATION, AND COATING
  • 3 MORPHOLOGY, STRUCTURE, AND METAL CONTENT OF NANOSIZED ALUMINUM POWDERS
  • 4 NANOSIZED AL POWDER REACTIVITY
  • 4.1 Non-isothermal Oxidation: Low-Heating Rate
  • 4.2 Non-isothermal Oxidation: High-Heating Rate
  • 5 RHEOLOGY OF NANOSIZED ALUMINUM-LOADED SOLID FUELS AND PROPELLANT SLURRIES
  • 5.1 Rheological Behavior of Uncured Solid Fuel Slurries
  • 5.2 Rheological Behavior of Uncured Solid Propellant Slurries
  • 6 CONCLUSION AND FUTURE DEVELOPMENT
  • ACKNOWLEDGMENTS
  • REFERENCES
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • K
  • L
  • M
  • N
  • O
  • P
  • R
  • S
  • T
  • U
  • V
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

214,20 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok