Nanosized Tubular Clay Minerals

Halloysite and Imogolite
 
 
Elsevier (Verlag)
  • 1. Auflage
  • |
  • erschienen am 9. Juni 2016
  • |
  • 778 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
978-0-08-100292-6 (ISBN)
 

Nanosized Tubular Clay Minerals provides the latest coverage from leading scientists on a wide field of expertise regarding the current state of knowledge about nanosized tubular clay minerals. All chapters have been carefully edited and coordinated, and readers will find a resource that provides a clear view of the fundamental properties of clay materials and how their properties vary in chemical composition, structure, and the ways in which their modes of occurrence affect their engineering applications.

Besides being a great reference, the book provides research scientists, university teachers, industrial chemists, physicists, graduate students, and environmental engineers and technologists with the ability to analyze and characterize clays and clay minerals to improve selectivity, along with techniques on how they can apply clays in ceramics in all aspects of industrial, geotechnical, agricultural, and environmental use.


  • Examines clay properties from the molecular to the macroscopic scale
  • Addresses experimental and modeling issues
  • Authored by experts who are well-versed in the properties of nanosized tubular clay minerals
1572-4352
  • Englisch
  • London
Elsevier Science
  • 52,55 MB
978-0-08-100292-6 (9780081002926)
0081002920 (0081002920)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Nanosized Tubular Clay Minerals: Halloysite and Imogolite
  • Copyright
  • Dedication
  • Contents
  • Contributors
  • Acknowledgements
  • Chapter 1: General Introduction
  • References
  • Part I: Geology and Mineralogy of Nanosized Tubular Clay Minerals
  • Chapter 2: Geology and Mineralogy of Nanosized Tubular Halloysite
  • 2.1. Introduction
  • 2.2. Background History and Nomenclature
  • 2.3. Genesis and Occurrence
  • 2.3.1. Geological Processes of Main Halloysite Ores and Soils
  • 2.3.2. Genetic Relation Between Halloysite and Kaolinite
  • 2.3.3. Main Halloysite Ore Deposit in the World
  • 2.4. Mineralogical Characterisation
  • 2.4.1. Crystal Structure
  • 2.4.1.1. Crystal Structure and Related Characterisations
  • 2.4.1.2. Qualitative and Quantitative Differentiation of Halloysite and Kaolinite
  • 2.4.2. Chemical Composition and Affecting Factors
  • 2.4.3. Morphology and Origin of Its Diversity
  • 2.4.3.1. Tubular Halloysite
  • 2.4.3.2. Spheroidal Halloysite
  • 2.4.3.3. Relation Between Morphology and Iron Content
  • 2.4.4. Hydration and Dehydration: An Important Fingerprint of Their Properties
  • 2.4.4.1. Dehydration-Rehydration Behaviour upon RH
  • 2.4.4.2. Interlayer Water Content and Status
  • 2.5. Concluding Remarks
  • References
  • Chapter 3: Geology and Mineralogy of Imogolite-Type Materials
  • 3.1. Introduction
  • 3.2. Structural Properties of Imogolite-Type Materials
  • 3.2.1. Imogolite
  • 3.2.2. Allophanes
  • 3.2.3. Typical Methodology Applied to Differentiate Imogolite and Allophanes
  • 3.2.4. Imogolite, Allophane, Proto-Imogolite and Proto-Allophane: Multiple Names for a Single Material?
  • 3.3. Occurrence and Formation of Imogolite-Type Materials in Geologic and Pedologic Environments
  • 3.3.1. Occurrence and Formation in the Geological Environment
  • 3.3.2. Occurrence and Formation in Soil
  • 3.3.2.1. Andosols: An Imogolite-Type Material Mine
  • 3.3.2.2. Imogolite-Type Material Formation in Soils
  • 3.4. Reactivity and Effect on Soil Properties
  • 3.4.1. Phosphate
  • 3.4.2. Metals
  • 3.4.3. Organic Matter
  • 3.5. Concluding Remarks
  • References
  • Part II: Structure and Properties of Nanosized Tubular Clay Minerals
  • Chapter 4: Physicochemical Properties of Halloysite
  • 4.1. Introduction
  • 4.2. Surface and Colloidal Properties of Halloysite
  • 4.2.1. Cation Exchange Capacity
  • 4.2.2. Specific Surface Area and Porosity
  • 4.2.3. Dispersion Behaviour in Water
  • 4.2.4. Hydrophilicity and Hydrophobicity
  • 4.3. Mechanical Properties of Halloysite
  • 4.4. Chemical Stability of Halloysite Under Acid and Alkaline Treatments
  • 4.4.1. Effect of Acid Treatment on Halloysite
  • 4.4.2. Effect of Alkali Treatment on Halloysite
  • 4.5. Concluding Remarks
  • References
  • Chapter 5: Characterisation of Halloysite by Electron Microscopy
  • 5.1. Introduction
  • 5.2. Background of Electron Microscopy
  • 5.3. Morphological Analysis
  • 5.4. Electron Diffraction
  • 5.5. HRTEM Imaging of the Crystal Structure
  • 5.6. Reconciliation of ED and HRTEM Results
  • 5.7. Formation Mechanism of Halloysite Structure
  • 5.8. Concluding Remarks
  • References
  • Chapter 6: Characterisation of Halloysite by Spectroscopy
  • 6.1. Introduction
  • 6.2. Brief Presentation of Various Spectroscopic Methods
  • 6.2.1. Infrared Spectroscopy
  • 6.2.2. Raman Spectroscopy
  • 6.2.3. X-Ray Photoelectron Spectroscopy
  • 6.2.4. Solid-State Magic-Angle-Spinning Nuclear Magnetic Resonance Spectroscopy
  • 6.2.5. Mössbauer Spectroscopy
  • 6.2.6. Electron Spin Resonance Spectroscopy
  • 6.3. Infrared and Raman Spectroscopy of Halloysite and Related Kaolin Minerals
  • 6.3.1. The Hydroxyl Groups and Interlayer Water
  • 6.3.2. Halloysite Layers
  • 6.4. Other Spectroscopic Characterisations of Halloysite
  • 6.4.1. X-Ray Photoelectron Spectroscopy
  • 6.4.2. Solid-State MAS-NMR
  • 6.4.3. ESR, Mössbauer and Cathodeluminescence Techniques
  • 6.5. Concluding Remarks
  • References
  • Chapter 7: Thermal-Treatment-Induced Deformations and Modifications of Halloysite
  • 7.1. Introduction
  • 7.2. Dehydration of Halloysite Under Thermal Treatment-Effects of Temperature
  • 7.3. Structural Changes and Phase Transformations of Halloysite Under Calcination
  • 7.4. Deformations in Texture and Morphology of Halloysite Under Calcination and Related Modifications in Surface Reactivities
  • 7.4.1. Deformations in Texture and Morphology
  • 7.4.2. Changes in Surface Reactivities
  • 7.5. Some Applications of Heat-Treated Halloysite
  • 7.6. Concluding Remarks
  • References
  • Chapter 8: Surface Modifications of Halloysite
  • 8.1. Introduction
  • 8.2. Chemical Modification of the Internal Lumen Surface
  • 8.2.1. Grafting of Organosilane onto the Internal Aluminol Groups
  • 8.2.2. Grafting of Other Organic Compounds onto Internal Aluminol Groups
  • 8.3. Modification of the External Surface
  • 8.3.1. Surfactant, Polymer and Biopolymer Coatings
  • 8.3.2. Organosilane Modification of Calcined Halloysite
  • 8.4. Modification of the Interlayer Surface
  • 8.4.1. Intercalation of Guest Molecules into the Interlayer Space
  • 8.4.2. Grafting of Organics in the Interlayer Space
  • 8.5. Applications of Surface-Modified Halloysite
  • 8.5.1. Halloysite Polymer Nanocomposite
  • 8.5.2. Controlled Loading and Release of Guest Molecules
  • 8.5.3. Pollution Remediation
  • 8.6. Concluding Remarks
  • Abbreviations
  • References
  • Chapter 9: Physicochemical Properties of Imogolite
  • 9.1. Introduction
  • 9.2. Surface Properties of Imogolite
  • 9.2.1. Surface Charge
  • 9.2.2. Electrokinetic Phenomena
  • 9.3. Chemisorption and Physisorption
  • 9.3.1. Gas Adsorption Properties
  • 9.3.1.1. Determination of Textural Properties Through Adsorption of Nonreactive and Non-H-Bonded Molecules
  • 9.3.1.2. Determination of Acid-Base Properties Through Adsorption of Reactive Molecules
  • 9.3.1.3. Water and H-Bonded Liquid Adsorption on Imogolite
  • 9.3.2. Metal/Metalloid Adsorption in the Liquid Phase
  • 9.4. Conclusive Remarks
  • References
  • Chapter 10: Characterisation of Imogolite by Microscopic and Spectroscopic Methods
  • 10.1. Introduction
  • 10.2. Microscopic Methods
  • 10.2.1. Atomic Force Microscopy and Scanning Tunneling Microscopy
  • 10.2.2. Transmission Electron Microscopy
  • 10.2.3. Cryo-TEM
  • 10.3. Spectroscopic Methods
  • 10.3.1. Fourier Transformed Infrared Spectroscopy
  • 10.3.2. Nuclear Magnetic Resonance
  • 10.3.3. X-Ray Absorption Including X-Ray Absorption Near Edge Structure and Extended X-Ray Absorption Fine Structure
  • 10.3.4. X-Ray Photoelectron Spectroscopy
  • 10.4. Scattering Methods
  • 10.4.1. Dynamic Light Scattering
  • 10.4.2. X-Ray-Based Analysis
  • 10.4.2.1. XRD by Imogolite and Imogolite Bundles
  • 10.4.2.2. Small-Angle X-Ray Scattering
  • 10.5. Chemical and Mass Analysis
  • 10.5.1. Chemical Composition
  • 10.5.2. Gas Adsorption
  • 10.5.3. Water Adsorption and Thermogravimetric Analysis
  • 10.6. Concluding Remarks
  • References
  • Chapter 11: Deformations and Thermal Modifications of Imogolite
  • 11.1. Introduction
  • 11.2. X-Ray Scattering Formalism
  • 11.2.1. Individual Nanotubes
  • 11.2.2. Nanotubes Organised in Bundles
  • 11.2.3. Typical Experimental Setup
  • 11.3. Ovalisation of the Imogolite
  • 11.4. Hexagonalisation of the Imogolite
  • 11.5. Dehydroxylation and High-Temperature Structural Transformations
  • 11.6. Concluding Remarks
  • References
  • Chapter 12: Surface Chemical Modifications of Imogolite
  • 12.1. Introduction
  • 12.2. Modification of the Inner Pores of Imogolite
  • 12.2.1. Direct Synthesis Methods
  • 12.2.2. Postsynthesis Methods
  • 12.2.3. Properties of the Obtained Materials
  • 12.3. Modification of the Outer Surface of Imogolite
  • 12.3.1. Grafting of Organic Molecules
  • 12.3.2. Reactivity of Outer Surfaces
  • 12.4. Surface Properties of the Lamellar Phases Deriving from Imogolite Thermal Collapse
  • 12.5. Concluding Remarks
  • Abbreviations
  • References
  • Chapter 13: Liquid-Crystalline Phases of Imogolite and Halloysite Dispersions
  • 13.1. Introduction
  • 13.2. Structures of Liquid Crystals
  • 13.3. The Nematic Phase of Imogolite Nanotubes
  • 13.4. The Columnar Phase of Imogolite Nanotubes
  • 13.5. Anisotropy of clay polymer nanocomposites Based on Imogolite Nanotubes
  • 13.6. Liquid-Crystalline Phases of Halloysite, Another Rodlike Tubular Clay Mineral
  • 13.7. Concluding Remarks
  • Abbreviations
  • References
  • Chapter 14: Molecular Simulation of Nanosized Tubular Clay Minerals
  • 14.1. Introduction
  • 14.2. Computational Aspects
  • 14.2.1. Force Field Simulations
  • 14.2.2. Density-Functional Theory
  • 14.2.3. Self-consistent-Charge Density-Functional Tight-Binding Method
  • 14.3. Imogolites
  • 14.3.1. Imogolite Model
  • 14.3.2. Imogolite: Aluminosilicate Nanotubes
  • 14.3.3. Aluminogermanate Nanotubes
  • 14.3.4. Other Imogolite-like Nanotubes
  • 14.3.5. Modification of Imogolite
  • 14.4. Halloysite
  • 14.5. Chrysotile and Nano-Fibriform Silica
  • 14.6. Concluding Remarks
  • Abbreviations
  • References
  • Part III: Synthesis of Nanosized Tubular Clay Minerals
  • Chapter 15: Why a 1:1 2D Structure Tends to Roll?: A Thermodynamic Perspective
  • 15.1. Introduction
  • 15.2. Equilibrium Energy of a Single Nanotube
  • 15.2.1. Single-Walled (SW) Case
  • 15.2.2. Double-Walled (DW) Case
  • 15.2.3. Multi-Walled (MW) Case
  • 15.2.3.1. ma«R0, thin MW
  • 15.2.3.2. R0«a, thick single layer
  • 15.2.3.3. R0»a and R0«ma (so m»1), thin single layer, but thick whole MW
  • 15.2.4. Scroll (SC) Case
  • 15.2.4.1. na«R0
  • 15.2.4.2. R0»a and R0«na (so n»1), namely, a«1 and ß»1
  • 15.3. Entropy of the Mixing of Platelets and Nanotubes
  • 15.3.1. Proto-Imogolites
  • 15.3.2. MW Imogolites
  • 15.3.3. General Mixture of Protos and MW Imogolites
  • 15.4. Density-Temperature Phase Diagram of Nanosized Cylinders
  • 15.4.1. Most Favourable SW, n0~1, So m0=1 (Energy and Entropy Favour SW)
  • 15.4.2. Most Favourable DW, n0~2, So m0=2 (Energy Favours DW but Entropy Favours SW)
  • 15.4.2.1. (Emin,1?Emin,2)/(ßb2)«e?2/3B (small gap between SW and DW energies)
  • 15.4.2.2. e?2/3B«(Emin,1?Emin,2)/(ßb2)«1 (intermediate gap between SW and DW energies)
  • 15.4.2.3. 1«(Emin,1?Emin,2)/(ßb2) (broad gap between SW and DB energies)
  • 15.5. Concluding Remarks
  • References
  • Chapter 16: Formation Mechanisms of Tubular Structure of Halloysite
  • 16.1. Introduction
  • 16.2. Formation Mechanisms of the Tubular Structure of Halloysite
  • 16.2.1. Mismatch Between Octahedral and Tetrahedral Sheets
  • 16.2.1.1. Tetrahedral Rotation and Tetrahedral Curving
  • 16.2.1.2. How Water Molecules Enter the Interlayer Space
  • 16.2.1.3. Rolling Orientations of the Layer
  • 16.2.2. Attraction Among Interlayer Hydroxyl Groups in Octahedrons
  • 16.2.3. Surface Tension of Water
  • 16.2.4. Comparison of Three Mechanisms
  • 16.2.5. Other Factors Affecting Rolling
  • 16.2.5.1. Octahedral Substitution
  • 16.2.5.2. Tetrahedral Substitution
  • 16.3. Experimental Observation of Rolling of Kaolinite
  • 16.3.1. Rolling Mechanisms in Synthesis of Kaolinite Nanoroll
  • 16.3.2. Rolling in Natural Transformation from Kaolinite to Halloysite
  • 16.4. Concluding Remarks
  • References
  • Chapter 17: Halloysite-like Structure via Delamination of Kaolinite
  • 17.1. Introduction
  • 17.2. Early Delamination Studies
  • 17.3. Two-Step Delamination and Rolling Procedures
  • 17.4. One-Step Delamination and Rolling Procedures
  • 17.5. Delamination and Rolling Procedures Involving the Use of Polymers and Ionic Liquids
  • 17.6. Concluding Remarks
  • References
  • Chapter 18: From Molecular Precursor to Imogolite Nanotubes
  • 18.1. Introduction
  • 18.2. Summary of Synthesis Methods
  • 18.2.1. Main Chemical Recipes
  • 18.2.2. Aluminium Salts and Silicon Sources
  • 18.2.3. Aluminium Salts and Sodium Silicates
  • 18.2.4. Aluminium and Silicon Alkoxides
  • 18.2.5. Other Recipes
  • 18.3. Influence of Some Important Parameters: Concentration, Al/Si and OH/Al Ratios
  • 18.3.1. Concentration Range
  • 18.3.1.1. Al/Si-Based Imogolite Synthesis
  • 18.3.1.2. Al-Ge-Based Imogolite Synthesis
  • 18.3.2. Al/Si Ratio
  • 18.3.3. OH/Al Ratio
  • 18.4. Imogolite Formation Mechanism
  • 18.4.1. Aluminium Hydrolysis and Condensation
  • 18.4.2. Silicon Hydrolysis and Condensation
  • 18.4.3. From Polycation to Proto-Imogolite
  • 18.5. Proto-Imogolite Shape and Interaction
  • 18.6. Imogolite Growth Mechanism (Kinetic Models)
  • 18.7. Concluding Remarks
  • References
  • Chapter 19: Imogolite-Like Family
  • 19.1. Introduction
  • 19.2. Theoretical Predictions Concerning the Extent of the Imogolite-like Family
  • 19.3. Synthesis Strategies to Successfully Obtain New Imogolite-like Family Members
  • 19.3.1. Examples of Imogolite-Like Nanoparticles Obtained Through Coprecipitation
  • 19.3.1.1. General Coprecipitation Synthesis
  • 19.3.1.1.1. Organic Grafting Inside Imogolite
  • 19.3.1.2. Tested Ratio of Elemental Substitution
  • 19.3.2. Examples of Imogolite-Like Nanoparticles Obtained Through Postmodifications
  • 19.3.2.1. Isomorphic Substitution vs Fe2O3 Clusters (Shafia et al., 2015)
  • 19.3.2.2. Ni Adsorption at a Specific Surface Sites (Levard et al., 2009a)
  • 19.3.2.3. Grafting of Organic Molecules
  • 19.4. Examples of Imogolite-Like Family Nanoparticles
  • 19.4.1. Aluminogermanate Nanotubes/Nanospheres
  • 19.4.2. Iron-Containing Imogolite
  • 19.4.3. Oxy-imogolite
  • 19.5. Possible Projection
  • 19.6. Concluding Remarks
  • References
  • Part IV: Applications of Nanosized Tubular Clay Minerals
  • Chapter 20: An Overview on the Safety of Tubular Clay Minerals
  • 20.1. Introduction
  • 20.1.1. The HARN Paradigm
  • 20.1.2. Specific Industrial Applications of Asbestos and Carbon Nanotubes-The Different Spin-Off Effects in Terms of Toxi ...
  • 20.2. Potential Health Injury Resulting from Industrial Uses of Halloysite and Imogolite
  • 20.2.1. Uses of Halloysite and Imogolite
  • 20.2.2. Spin-Off in Occupational, Environmental and Therapeutic Issues
  • 20.3. The Biological Effects of Potential Interest in the Toxicology of Nanotubular Particles
  • 20.3.1. Experimental Studies on the Biological Effects of Halloysite
  • 20.3.1.1. Cytocompatibility and Drug Release
  • 20.3.1.2. Biocompatibility of Clay Polymer Nanocomposites
  • 20.3.1.3. Conventional Toxicity Studies
  • 20.3.2. Experimental Studies on the Biological Effects of Imogolite
  • 20.3.3. Outline of Studies Carried Out so Far and Perspectives
  • 20.4. Determinants of Nanoparticle Toxicity and Mechanisms
  • 20.4.1. Determinants of Nanoparticle Toxicity
  • 20.4.2. Mechanism of Action
  • 20.4.3. Comparison of Halloysite, Imogolite and Related Nanotube Characteristics
  • 20.5. Concluding Remarks and Perspectives
  • References
  • Chapter 21: Halloysite Polymer Nanocomposites
  • 21.1. Introduction
  • 21.2. Processing Methods for the Fabrication of Halloysite Polymer Nanocomposites
  • 21.2.1. Solution Mixing
  • 21.2.2. Melt Mixing
  • 21.2.3. In Situ Polymerization
  • 21.2.4. Electrospinning and Melt Spinning
  • 21.2.5. Layer-by-Layer Self-assembly
  • 21.2.6. Electrophoretic Deposition
  • 21.2.7. Latex Coagulation
  • 21.3. Interface Interaction in Halloysite Polymer Nanocomposites
  • 21.3.1. Covalent Bonding
  • 21.3.2. Hydrogen Bonding
  • 21.3.3. Interfacial Charge Transferring
  • 21.3.4. Complexation
  • 21.4. Multiple Effects of Halloysite on Polymer Nanocomposites
  • 21.4.1. Mechanical Reinforcement
  • 21.4.2. Thermal Stability and Flame Resistance
  • 21.4.3. Crystallization Behaviour
  • 21.4.4. Dielectric Property
  • 21.4.5. Wettability Properties
  • 21.4.6. Biocompatibility and Related Properties
  • 21.5. Concluding Remarks
  • Abbreviations
  • References
  • Chapter 22: Halloysite for Controllable Loading and Release
  • 22.1. Introduction
  • 22.2. Aspects of Halloysite Structure Related to Controlled-Release Applications
  • 22.3. Loading and Release Characteristics of Unmodified Halloysite Nanotubes
  • 22.3.1. Loading Active Agents Within Halloysite Lumens
  • 22.3.2. Release Characteristics of Unmodified Halloysite Nanotubes
  • 22.3.2.1. Inorganic Salts
  • 22.3.2.2. Corrosion Inhibitors
  • 22.3.2.3. Antiseptics and Antibiotics
  • 22.3.2.4. Medicines
  • 22.3.2.5. Proteins and Enzymes
  • 22.4. Strategies for Controlling the Loading Capacity and Release Rate of Active Agents
  • 22.4.1. Selective Lumen Etching
  • 22.4.2. Formation of Halloysite Nanotube Release Stoppers
  • 22.4.3. Polymeric Shells on Halloysite Nanotubes
  • 22.4.4. Surface Functionalisation of Halloysite for Controlled Release
  • 22.5. Potential Applications of Halloysite as a Controlled-Release Nanocontainer
  • 22.5.1. Functional Halloysite Polymer Nanocomposites and Coatings
  • 22.5.2. Polymer Scaffolds for Tissue Engineering and Wound Healing
  • 22.5.3. Bone Cements and Implants
  • 22.5.4. Cosmetics
  • 22.5.5. Biomedical Devices
  • 22.6. Concluding Remarks
  • Abbreviations
  • References
  • Chapter 23: Halloysite for Adsorption and Pollution Remediation
  • 23.1. Introduction
  • 23.2. Surface Properties of Raw Halloysite and Adsorption Mechanisms
  • 23.3. Functionalization of Halloysite Structure for the Improvement of Adsorption Properties
  • 23.3.1. The Effect of Calcination and Acid Activation
  • 23.3.2. Raw and Interlayer-Grafted Halloysite for the Removal of Cations
  • 23.3.3. Surface and Interlayer-Modified Halloysite for the Removal of Anions
  • 23.3.4. Raw Halloysite and Halloysite-Based Composites for the Removal of Organic Pollutants
  • 23.4. Concluding Remarks
  • References
  • Chapter 24: Imogolite Polymer Nanocomposites
  • 24.1. Introduction
  • 24.2. Surface Modification for Imogolite Polymer Nanocomposites
  • 24.3. Imogolite Polymer Nanocomposites by the Simple Blending Method
  • 24.4. Imogolite Polymer Nanocomposites Prepared by In Situ Imogolite Synthesis in Polymer Solution
  • 24.5. Imogolite Biopolymer Nanocomposites
  • 24.6. Concluding Remarks
  • References
  • Chapter 25: Imogolite for Catalysis and Adsorption
  • 25.1. Introduction
  • 25.2. Catalytic Properties of Imogolite
  • 25.3. Catalytic Properties of Modified Imogolite
  • 25.4. Adsorption Properties of Natural and Modified Imogolite
  • 25.5. Concluding Remarks
  • Abbreviations
  • References
  • Chapter 26: Health and Medical Applications of Tubular Clay Minerals
  • 26.1. Introduction
  • 26.2. Use of Nanosized Tubular Clay Minerals in Drug Delivery
  • 26.2.1. Natural Nanosized Tubular Clay Minerals
  • 26.2.2. Functionalised Nanosized Tubular Clay Minerals
  • 26.2.3. Nanosized Tubular Clay Minerals/Biopolymer Nanocomposites
  • 26.3. Use of Nanosized Tubular Clay Minerals in Tissue Engineering and Reparative Medicine
  • 26.3.1. Tissue Engineering
  • 26.3.2. Reparative Medicine
  • 26.4. Use of Nanosized Tubular Clay Minerals in Diagnostic and Medical Devices
  • 26.5. Concluding Remarks
  • References
  • Chapter 27: Industrial Implications in the Uses of Tubular Clay Minerals
  • 27.1. Marketing Products Containing High-Aspect-Ratio Nanoparticles Reasonably
  • 27.2. Synthetic or Natural Materials?
  • 27.3. Technical Advantages of Imogolite and Halloysite
  • 27.4. Imogolite and Imogolite-like Materials at Eastman Kodak
  • 27.4.1. Antistatic Coating
  • 27.4.2. Cleaning of Water and Trapping of Metals
  • 27.4.3. Trapping of Acetic Acid
  • 27.4.4. Inkjet Receiver
  • 27.5. Concluding Remarks
  • References
  • Chapter 28: Epilogue
  • 28.1. Two Similar Characteristics of These Porous Clay Minerals
  • 28.2. Three Main Differences Between Halloysite and Imogolite
  • 28.2.1. Tubular Morphology Deriving from Curvatures in Opposite Ways
  • 28.2.2. Spiraled Multi-Walled Halloysite vs Single-Walled or Double-Walled Imogolite
  • 28.2.3. Easy Synthesis of Imogolite vs Inexistent Synthesis of Halloysite
  • 28.3. Perspectives
  • Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

148,75 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok