Semiconductor Solar Photocatalysts

Fundamentals and Applications
Wiley-VCH (Verlag)
  • 1. Auflage
  • |
  • erschienen am 3. November 2021
  • |
  • 512 Seiten
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-3-527-83430-3 (ISBN)
Summarizes the fundamentals and significant advances of semiconductor-based photocatalysts for solar energy conversion.
weitere Ausgaben werden ermittelt
Professor Jiaguo Yu received his BS and MS degrees in chemistry from Central China Normal University and Xi'an Jiaotong University, respectively, and his PhD degree in materials science in 2000 from Wuhan University of Technology. In 2000, he became a Professor at Wuhan University of Technology. He was a postdoctoral fellow at the Chinese University of Hong Kong from 2001 to 2004, a visiting scientist from 2005 to 2006 at the University of Bristol, and a visiting scholar from 2007 to 2008 at University of Texas at Austin. His current research interests are semiconductor photocatalysis for energy and environmental applications. He has published more than 600 papers in peer-reviewed international journals, and has been on the lists of Thomson Reuters/Clarivate Analytics Highly-Cited Researchers since 2014. He is Member of Academia Europaea (2020), Fellow of the European Academy of Sciences (2020) and Fellow of the Royal Society of Chemistry (2015). He is an Associate Editor of Chinese journal of Catalysis (since 2020) and Editor of Applied Surface Science (2014-2020), and serves on the editorial board of several international journals.
Professor Xin Li received his BS and PhD degrees in Chemical Engineering from Zhengzhou University in 2002 and South China University of Technology in 2007, respectively. He joined South China Agricultural University as a faculty staff member, and became an associate professor of Applied Chemistry in 2011. In 2017, he became a Professor at the South China Agricultural University. During 2012-2013, he was a visiting scholar at the Electrochemistry Center, the University of Texas at Austin, USA. His research interests include photocatalysis, photoelectrochemistry, adsorption, and the development of nanomaterials and devices.
Dr. Jingxiang Low obtained his B.Eng (Hons) from Multimedia University, Malaysia in 2011 and master/Ph.D. degree from Wuhan University of Technology in 2018. He is currently working at University of Science and Technology of China. His research interests include the design, synthesis and fabrication of photocatalytic materials for energy and environmental applications. He has published more than 35 papers in renowned journals including Chemical Reviews, Advanced Materials, Journal of the American Chemical Society, etc., with total citations over 10,000 times (H-index: 26). He has won CAS President's International Fellowship Initiative, 2017 top 100,000 ranked scientists (PLOS biology) and China's 100 most influential SCI papers.
Chapter 1: The fundamentals of solar energy photocatalysis
1.1 Background
1.2 History of solar energy photocatalysis
1.3 Fundamental principles of solar energy photocatalysis
1.3.1 Basic mechanisms for solar energy photocatalysis
1.3.2 Thermodynamic requirements for solar energy photocatalysis
1.3.3 Dynamics requirements for solar energy photocatalysis
1.4 Design, development and modification of semiconductor photocatalysts
1.4.1 Design principles of semiconductor photocatalysts
1.4.2 Classification of semiconductor photocatalysts
1.4.3 Modification strategies of semiconductor photocatalysts
1.4.4 Development approaches of novel semiconductor photocatalysts
1.5 Processes and evaluation of solar energy photocatalysis
1.5.1 Processes of solar energy photocatalysis photocatalytic water splitting photocatalytic CO2 reduction photocatalytic degradation
1.5.2 Evaluation of solar energy photocatalysis
1.6 The scope of this book

Chapter 2: Heterojunction systems for photocatalysis
2.1 Introduction
2.2 Classification of heterojunction photocatalysts
2.2.1 Type-II heterojunction photocatalysts
2.2.2 p-n junction photocatalysts
2.2.3 Surface junction photocatalysts
2.2.4 Direct Z-scheme photocatalysts
2.2.5 S-scheme photocatalysts
2.3 Evaluation of the heterojunction photocatalysts
2.3.1 Band structure Light absorption ability Reduction and oxidation ability Identification of major charge carriers
2.3.2 Charge carrier separation efficiency Electrochemical test Optical spectroscopy
2.3.3 Charge carrier migration mechanism Metal loading Reactive oxygen species trapping In situ irradiated XPS
2.4 Applications
2.4.1 Photocatalytic water splitting
2.4.2 Photocatalytic CO2 reduction
2.4.3 Photocatalytic N2 fixation
2.4.4 Photocatalytic environmental remediation
2.4.5 Photocatalytic disinfection
2.5 Summary and Future Perspective

Chapter 3: Graphene-based photocatalysts
3.1 Introduction
3.2 Graphene and its derivatives
3.2.1 Graphene oxide
3.2.2 Reduced graphene oxide
3.2.3 Graphene quantum dot
3.3 General preparation techniques of graphene in photocatalysis
3.3.1 Chemical exfoliation
3.3.2 Chemical vapor deposition
3.4 General advantages of graphene
3.4.1 Conductor behavior
3.4.2 Photothermal effect
3.4.3 Large specific surface area
3.4.4 Enhancing photostability
3.4.5 Improving nanoparticle dispersion
3.5 Characterization methods
3.5.1 Transmission electron microscopy
3.5.2 Atomic force microscopy
3.5.3 Raman spectroscopy
3.5.4 X-ray photoelectron spectroscopy
3.6 Recent development in graphene-based photocatalysts
3.6.1 Metal oxide
3.6.2 Metal sulfide
3.6.3 Non-metal semiconductor
3.6.4 Metal-organic framework
3.7 Summary and concluding remarks

Chapter 4: Metal sulfide semiconductor photocatalysts
4.1 Introduction
4.2 General view of metal sulfide photocatalysts
4.3 Synthesis of metal sulfide photocatalysts
4.3.1 Solution-based method Hydrothermal method Solvothermal method
4.3.2 Chemical bath deposition
4.3.3 Template method
4.3.4 Ion exchange method
4.3.5 Other synthetic methods
4.4 CdS-based photocatalysts
4.4.1 Crystal structures and morphology Zero-dimensional structure One-dimensional structure Two-dimensional structure Three-dimensional structure
4.4.2 Construction of CdS-based nanocomposite photocatalysts CdS cocatalyst heterojunctions CdS-based type II heterojunctions CdS-based Z-scheme heterojunctions CdS-based S-scheme heterojunctions
4.5 In2S3-based photocatalysts
4.5.1 Crystal structure and electronic properties
4.5.2 Morphology of In2S3 photocatalyst Zero-dimensional structure One-dimensional structure Two-dimensional structure Three-dimensional structure
4.5.3 Construction of In2S3-based composite photocatalysts In2S3-based type-II heterojunctions In2S3-based direct Z-scheme heterojunctions In2S3-based i

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)


Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.

Download (sofort verfügbar)

151,99 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen