Hydraulic,Fracture,Modeling

 
 
Elsevier (Verlag)
  • 1. Auflage
  • |
  • erschienen am 12. Dezember 2017
  • |
  • 566 Seiten
 
E-Book | ePUB mit Adobe-DRM | Systemvoraussetzungen
978-0-12-812999-9 (ISBN)
 

Hydraulic,Fracture,Modeling,delivers,all,the,pertinent,technology,and,solutions,in,one,product,to,become,the,go-to,source,for,petroleum,and,reservoir,engineers.,Providing,tools,and,approaches,,this,multi-contributed,reference,presents,current,and,upcoming,developments,for,modeling,rock,fracturing,including,their,limitations,and,problem-solving,applications.,

,

Fractures,are,common,in,oil,and,gas,reservoir,formations,,and,with,the,ongoing,increase,in,development,of,unconventional,reservoirs,,more,petroleum,engineers,today,need,to,know,the,latest,technology,surrounding,hydraulic,fracturing,technology,such,as,fracture,rock,modeling.,There,is,tremendous,research,in,the,area,but,not,all,located,in,one,place.,Covering,two,types,of,modeling,technologies,,various,effective,fracturing,approaches,and,model,applications,for,fracturing,,the,book,equips,today's,petroleum,engineer,with,an,all-inclusive,product,to,characterize,and,optimize,today's,more,complex,reservoirs.

  • Offers,understanding,of,the,details,surrounding,fracturing,and,fracture,modeling,technology,,including,theories,and,quantitative,methods
  • Provides,academic,and,practical,perspective,from,multiple,contributors,at,the,forefront,of,hydraulic,fracturing,and,rock,mechanics
  • Provides,today's,petroleum,engineer,with,model,validation,tools,backed,by,real-world,case,studies


Yu-Shu,Wu,is,currently,a,tenured,Professor,and,the,Reservoir,Modeling,Chair,for,the,Department,of,Petroleum,Engineering,at,the,Colorado,School,of,Mines,in,Golden,,Colorado,,USA.,Dr.,Wu's,research,and,teaching,areas,include,reservoir,engineering,,specifically,reservoir,characterization,and,simulation,,fractured,reservoir,characterization,,and,non-Newtonian,and,non-Darcy,flow,behavior.,Previously,,Yu-Shu,has,worked,as,a,Scientist,at,the,Lawrence,Berkeley,National,Laboratory,researching,unconventional,natural,gas,resources,,Adjunct,Professor,at,Peking,University,in,Bejiing,,the,China,University,of,Geosciences,in,Beijing,,and,the,China,University,of,Petroleum,in,Qingdao,as,well,as,a,Researcher,at,SINOPEC,and,PetroChina.,Yu-Shu,has,published,over,300,conference,articles,,100,peer-reviewed,journal,papers,,contributed,to,mulitiple,book,chapters,,and,remains,active,on,many,journal,publications,as,technical,editor.,He,is,a,Fellow,and,member,of,the,Geological,Society,of,America,,a,member,of,the,Society,of,Petroleum,Engineers,,American,Geophysical,Union,,and,a,member,of,the,International,Professionals,for,the,Advancement,of,Chinese,Earth,Sciences.,Yu-Shu,earned,a,BS,in,Petroleum,Engineering,from,Daqing,Petroleum,Institute,,a,MS,in,Petroleum,Engineering,from,Southwest,Petroleum,Institute,(China),,and,a,MS,and,PhD,both,in,Reservoir,Engineering,from,University,of,California,at,Berkeley.
  • Englisch
  • San Diego
  • |
  • USA
  • 219,70 MB
978-0-12-812999-9 (9780128129999)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Hydraulic Fracture Modeling
  • Hydraulic Fracture Modeling
  • Copyright
  • Contents
  • Contributors
  • Preface
  • Acknowledgments
  • 1 - Finite-Element Modeling of the Growth and Interaction of Hydraulic Fractures in Poroelastic Rock Formations
  • 1.1 INTRODUCTION
  • 1.2 COMPUTATIONAL FRAMEWORK
  • 1.3 MODELING OF THERMOPOROELASTIC DEFORMATION IN FRACTURED MEDIA
  • 1.4 MODELING DISCRETE FRACTURE GROWTH
  • 1.5 EFFECT OF MATRIX POROELASTICITY ON THE GROWTH OF A SINGLE FRACTURE
  • 1.6 EFFECT OF INTERACTION ON THE PATHS OF TWO FLUID-DRIVEN PENNY-SHAPED CRACKS
  • 1.7 THERMAL EFFECTS ON EARLY STAGES OF HYDRAULIC FRACTURE GROWTH
  • 1.8 CONCLUSIONS
  • REFERENCES
  • 2 - A Framework of Integrated Flow-Geomechanics-Geophysics Simulation for Planar Hydraulic Fracture Propagation
  • 2.1 INTRODUCTION
  • 2.2 ANALYTICAL METHODS FOR VERTICAL HYDRAULIC FRACTURES
  • 2.2.1 Two-Dimensional Fracture Models: Perkins-Kern-Nordgren and Khristianovic-Geertsma-de Klerk Fractures
  • 2.2.2 Fracture Propagation and Fracture Widths
  • 2.3 NUMERICAL SIMULATION OF VERTICAL HYDRAULIC FRACTURE PROPAGATION IN THREE DIMENSIONS
  • 2.3.1 Mathematical Statements and Constitutive Relations
  • 2.3.2 Numerical Discretization and Examples
  • 2.4 JOINT ANALYSIS OF GEOMECHANICS AND GEOPHYSICS
  • 2.4.1 Induced Seismicity
  • 2.4.2 Electromagnetic Survey
  • 2.5 SUMMARY
  • REFERENCES
  • FURTHER READING
  • 3 - Simulation of Multistage Hydraulic Fracturing in Unconventional Reservoirs Using Displacement Discontinuity Met ...
  • 3.1 STRESS SHADOW EFFECT
  • 3.1.1 Theoretical Analysis
  • 3.1.2 Experimental Observations
  • 3.1.3 Field Observations
  • 3.2 NUMERICAL APPROACHES FOR MULTISTAGE HYDRAULIC FRACTURING IN UNCONVENTIONAL RESERVOIRS
  • 3.3 SIMULATION OF MULTISTAGE HYDRAULIC FRACTURING IN UNCONVENTIONAL RESERVOIRS USING DISPLACEMENT DISCONTINUITY METHOD
  • 3.3.1 Governing Equations for Hydraulic Fracture Growth
  • 3.3.1.1 Elasticity
  • 3.3.1.2 Fluid Flow
  • 3.3.1.3 Fracture Initiation and Propagation
  • 3.4 MODEL VALIDATION
  • 3.4.1 Mechanical Calculation Validation
  • 3.4.2 Radial Fracture Propagation
  • 3.5 APPLICATION
  • 3.5.1 Fracture Height Growth in Multilayer Formations
  • 3.5.2 Multistage Hydraulic Fracturing
  • 3.6 CONCLUSIONS
  • REFERENCES
  • 4 - Quasistatic Discrete Element Modeling of Hydraulic and Thermal Fracturing Processes in Shale and Low-Permeabili ...
  • 4.1 INTRODUCTION
  • 4.2 QUASISTATIC DISCRETE ELEMENT MODEL
  • 4.3 FRACTURING OF BRITTLE CRYSTALLINE ROCK BY THERMAL COOLING
  • 4.4 HYDRAULIC FRACTURING MODELING BY COUPLED QUASISTATIC DISCRETE ELEMENT MODEL AND CONJUGATE NETWORK FLOW MODEL
  • 4.4.1 Methodology of Coupled Discrete Element Model and Dual Network Flow Model
  • 4.4.2 Simultaneous Propagation of Interacting Fractures
  • 4.4.3 Interaction Between Propagating Hydraulic Fracture and Natural Fracture
  • 4.4.4 Three-Dimensional Simulations of Hydraulic Fracturing
  • REFERENCES
  • 5 - Hydraulic Fracturing Modeling and Its Extension to Reservoir Simulation Based on Extended Finite-Element Method ...
  • 5.1 INTRODUCTION
  • 5.2 MATHEMATICAL MODEL OF HYDRAULIC FRACTURE PROPAGATION
  • 5.2.1 Underlying Assumptions
  • 5.2.2 Governing Equations
  • 5.2.3 Fracture Propagation Criteria
  • 5.3 NUMERICAL SCHEME FOR HYDRAULIC FRACTURING
  • 5.3.1 Stress Field With Extended Finite-Element Method
  • 5.3.2 Pressure Field With Finite-Element Method
  • 5.3.3 Coupling Schemes
  • 5.4 NUMERICAL CASES AND RESULTS ANALYSIS
  • 5.4.1 Validation of Numerical Model
  • 5.4.2 The Effect of Rock Properties
  • 5.4.3 The Effect of Fluid Properties
  • 5.4.4 The Effect of Natural Fracture
  • 5.5 MODELING OF SIMULTANEOUS PROPAGATION OF MULTIPLE CLUSTER FRACTURES
  • 5.5.1 Problem Formulations
  • 5.5.2 Tip Asymptotic Solution
  • 5.5.3 Numerical Algorithm
  • 5.5.4 Numerical Results
  • 5.6 EXTENSIONS TO RESERVOIR HYDROMECHANICAL SIMULATION
  • 5.6.1 Coupling Scheme for Extended Finite-Element Method and Embedded Discrete Fracture Model
  • 5.6.2 Numerical Examples
  • 5.7 CONCLUSIONS
  • ACKNOWLEDGMENTS
  • REFERENCES
  • 6 - Fully Coupled 3-D Hydraulic Fracture Models-Development and Validation
  • 6.1 INTRODUCTION
  • 6.2 NUMERICAL FORMULATION
  • 6.2.1 Fluid Flow in the Porous Medium
  • 6.2.2 Fracture Nucleation and Propagation
  • 6.2.3 Fluid Flow in the Fracture
  • 6.3 IMPLEMENTATION SCHEME
  • 6.3.1 Cohesive Elements
  • 6.3.2 Extended Finite Elements
  • 6.4 SOLUTION VERIFICATION
  • 6.4.1 Vertical Planar Khristianovich-Geertsma-de Klerk Fracture
  • 6.4.2 Radial (Penny-Shaped) Fracture
  • 6.5 MODEL VALIDATION
  • 6.5.1 Laboratory-Scale Model
  • 6.5.2 Field-Scale Model
  • 6.6 CONCLUSION
  • NOMENCLATURE
  • ACKNOWLEDGMENTS
  • REFERENCES
  • FURTHER READING
  • 7 - Continuum Modeling of Hydraulic Fracturing in Complex Fractured Rock Masses
  • 7.1 INTRODUCTION
  • 7.2 TOUGH-FLAC SIMULATOR AND FRACTURE CONTINUUM APPROACH
  • 7.2.1 TOUGH-FLAC Simulator
  • 7.2.2 Fracture Continuum Approach
  • 7.3 VERIFICATION AND DEMONSTRATION
  • 7.3.1 Hydromechanics in Complex Fractured Rock
  • 7.3.2 Fracture Propagation Across Discontinuities and Geological Layers
  • 7.3.2.1 Verification of the Model for Fracture Propagation
  • 7.3.2.2 The Effects of Nearby Fractures on Hydraulically Induced Fracture Propagation
  • 7.3.2.3 The Influence of Complex Geological Settings on Hydraulically Induced Fracture Propagation
  • 7.3.3 Classical Hydraulic Fracturing Stress Measurement Operation
  • 7.4 CONCLUDING REMARKS
  • ACKNOWLEDGMENTS
  • REFERENCES
  • 8 - Development of a Hydraulic Fracturing Simulator for Single-Well Fracturing Design in Unconventional Reservoirs
  • 8.1 INTRODUCTION
  • 8.2 FRACTURE FLUID CHARACTERIZATION
  • 8.3 FRACTURE MASS CONSERVATION EQUATIONS
  • 8.4 FRACTURE ENERGY EQUATION
  • 8.5 FRACTURE MECHANICS EQUATIONS
  • 8.6 FLUID LEAK-OFF FORMULATION
  • 8.7 WELLBORE MASS, FLOW, AND ENERGY EQUATIONS
  • 8.8 STRESS SHADOW EFFECT
  • 8.9 GOVERNING EQUATION SOLUTION
  • 8.10 FRACTURE DISCRETIZATION
  • 8.11 DISCRETIZED FRACTURE MASS AND ENERGY CONSERVATION EQUATIONS
  • 8.12 DISCRETIZED FRACTURE MECHANICS EQUATIONS
  • 8.13 DISCRETIZED WELLBORE MASS AND ENERGY CONSERVATION EQUATIONS
  • 8.14 WELLBORE-SURROUNDINGS TRANSFER
  • 8.15 SOLUTION OF FINITE DIFFERENCE FLOW, ENERGY, AND FRACTURE MECHANICS EQUATIONS
  • 8.16 TIME STEP SIZE SELECTION
  • 8.17 EXAMPLE PROBLEMS
  • 8.17.1 Radial Fracture Propagation
  • 8.17.2 PKN-Like Fracture Propagation
  • 8.17.3 Field-Type Simulation
  • 8.18 SUMMARY AND CONCLUSIONS
  • ACKNOWLEDGMENTS
  • REFERENCES
  • 9 - Modeling Rock Fracturing Processes With FRACOD
  • 9.1 INTRODUCTION
  • 9.2 ROCK FRACTURE PROPAGATION MECHANISMS AND FRACTURE CRITERION
  • 9.3 THEORETICAL BACKGROUND OF FRACOD
  • 9.4 COUPLING BETWEEN ROCK FRACTURING AND THERMAL AND HYDRAULIC PROCESSES
  • 9.4.1 Rock Fracturing-Thermal Coupling
  • 9.4.2 Fracturing-Hydraulic Flow Coupling
  • 9.4.3 Hydraulic Flow-Thermal Coupling
  • 9.5 VALIDATION AND DEMONSTRATION EXAMPLES
  • 9.5.1 Modeling Biaxial Compressive Test
  • 9.5.2 Modeling Borehole Breakouts
  • 9.5.3 Cooling Fractures in Borehole Wall
  • 9.5.4 Rock Mass Cooling Due to Fluid Flow
  • 9.6 MODELING HYDRAULIC FRACTURING USING FRACOD
  • 9.6.1 Verification Example-Hydraulic Fracturing in Intact Rock
  • 9.6.2 Verification Against the Khristianovic-Geertsma-de Klerk Model
  • 9.6.3 Modeling Fracture Diversion
  • 9.7 MODELING CO2 GEOSEQUESTRATION EXPERIEMENT USING FRACOD
  • 9.7.1 Fault Reactivation
  • 9.7.2 Caprock Stability
  • 9.8 CONCLUSIONS
  • ACKNOWLEDGMENTS
  • REFERENCES
  • 10 - An Integrated Study for Hydraulic Fracture and Natural Fracture Interactions and Refracturing in Shale Reservoirs
  • 10.1 INTRODUCTION
  • 10.2 BACKGROUND
  • 10.3 COUPLED GEOMECHANICAL AND FLUID FLOW MODEL
  • 10.4 CASE STUDY: THE EAGLE FORD SHALE WELL PAD MODELING
  • 10.4.1 Complex Discrete Fracture Network Model With Predetermined Fracture Geometry
  • 10.4.2 Complex Discrete Fracture Network Model With Coupled Fracture Growth Simulations
  • 10.4.3 Refracturing
  • 10.5 DISCUSSIONS AND CONCLUDING REMARKS
  • ACKNOWLEDGMENTS
  • REFERENCES
  • 11 - Development of a Coupled Reservoir-Geomechanical Simulator for the Prediction of Caprock Fracturing and Fault ...
  • 11.1 INTRODUCTION
  • 11.2 GEOMECHANICAL FORMULATION
  • 11.2.1 Mean Stress Equation
  • 11.2.2 Stress Tensor Components
  • 11.3 FLUID AND HEAT FLOW FORMULATION
  • 11.4 DISCRETIZATION AND SOLUTION OF GOVERNING EQUATIONS
  • 11.4.1 Discretization of Simulator Conservation Equations
  • 11.4.2 Solution of Simulator Conservation Equations
  • 11.4.3 Geomechanical Boundary Conditions and Stress Field Initialization
  • 11.5 PERMEABILITY AND POROSITY DEPENDENCIES
  • 11.5.1 Isotropic Porous Media
  • 11.5.2 Fractured Media
  • 11.6 CAPROCK FRACTURING AND FAULT REACTIVATION
  • 11.6.1 Caprock Tensile Failure
  • 11.6.2 Fault and Fracture Reactivation
  • 11.6.3 Caprock Shear Failure
  • 11.7 EXAMPLE SIMULATIONS
  • 11.7.1 Displacement From a Uniform Load on a Semiinfinite Elastic Medium
  • 11.7.2 Two-Dimensional Mandel-Cryer Effect
  • 11.7.3 Depletion of a Single-Phase Reservoir
  • 11.7.4 In Salah Gas Project
  • 11.7.5 CO2 Leakage Through Fault Zones
  • 11.7.6 Fracture of a Concrete Block
  • 11.8 SUMMARY AND CONCLUSIONS
  • ACKNOWLEDGMENTS
  • REFERENCES
  • 12 - Modeling of Cryogenic Fracturing Processes
  • 12.1 INTRODUCTION
  • 12.1.1 Comparison With Hydraulic Fracturing
  • 12.1.2 History of Cryogenic Fracturing
  • 12.2 PHYSICAL PROCESS OF CRYOGENIC FRACTURING
  • 12.2.1 Fracture Initiation and Propagation
  • 12.2.2 Rock Failure Characteristics
  • 12.3 NUMERICAL MODELING
  • 12.3.1 Assumptions
  • 12.3.2 Heat Transfer and Fluid Flow
  • 12.3.3 Thermal Stress
  • 12.3.4 Failure Criteria
  • 12.3.5 Numerical Scheme
  • 12.3.6 Results
  • 12.4 CONCLUSIONS
  • ACKNOWLEDGMENTS
  • REFERENCES
  • 13 - Model Validation in Field Applications
  • 13.1 INTRODUCTION
  • 13.2 PRETREATMENT MODEL INPUTS
  • 13.2.1 Wellbore Friction
  • 13.2.2 Treatment and Wellbore Characterization
  • 13.2.3 Reservoir Characterization
  • 13.2.4 Pretreatment Calibration Techniques
  • 13.3 POSTTREATMENT MODEL VALIDATION
  • 13.3.1 Data Quality and Verification
  • 13.3.2 Landing Intervals
  • 13.3.3 Treatment Inputs
  • 13.3.4 Pressure Calibration
  • 13.3.5 Geometric Calibration
  • 13.4 PRODUCTION VALIDATION
  • 13.5 SUMMARY
  • NOMENCLATURE
  • REFERENCES
  • 14 - Hydraulic Fracturing: Experimental Modeling
  • 14.1 THEORETICAL BACKGROUND
  • 14.2 BREAKDOWN AND PROPAGATION PRESSURES
  • 14.2.1 Fracture Initiation Pressure
  • 14.2.2 Relief in Pressure
  • 14.3 FRACTURE GEOMETRIES
  • 14.3.1 Planar Geometries
  • 14.3.2 Nonplanar Fracture Geometries
  • 14.4 FRACTURE CONFINEMENT
  • 14.5 PERFORATION DESIGN FOR FRACTURING
  • 14.5.1 Vertical Wellbore
  • 14.5.2 Horizontal Wells
  • 14.5.2.1 Oblique Perforations
  • 14.5.2.2 Clustered Perforations
  • 14.5.3 Practical Applications of Oriented Perforations in Stimulation Techniques
  • 14.5.4 Gravity-Orientated Clustered Perforations
  • 14.5.5 Simulation of Oriented Perforation
  • 14.6 UNCONVENTIONAL RESOURCES FRACTURING
  • 14.6.1 Shale Fracturing
  • 14.6.1.1 Fracturing Fluid Flowback and Cleanup Process
  • 14.6.1.2 Spontaneous and Forced Imbibition Tests
  • 14.6.1.3 Fracture Propagation in Shale Reservoirs
  • 14.6.1.4 Shale Samples
  • 14.6.1.5 Shale Block Fracturing and Studying Stimulated Reservoir Volume Maximizing Methods
  • 14.6.2 Coal Fracturing
  • 14.7 WATERLESS FRACTURING
  • 14.7.1 Chemically Induced Pressure Pulse Fracturing
  • 14.7.2 Cryogenic Fracturing to Increase Stimulated Reservoir Volume
  • REFERENCES
  • 15 - Laboratory Studies to Investigate Subsurface Fracture Mechanics
  • 15.1 INTRODUCTION
  • 15.2 LABORATORY STUDIES OF FRACTURING
  • 15.2.1 Homogeneous Medium and Anisotropic Medium
  • 15.2.2 Heterogeneous Flawed Media
  • 15.2.3 Homogeneous Medium
  • 15.2.4 Homogeneous Flawed Medium: Joint Effects
  • 15.2.5 Homogeneous and Flawed Media
  • 15.2.6 Homogeneous Medium: Varying Stresses
  • 15.2.7 Homogeneous and Heterogeneous Media
  • 15.2.8 Anisotropic Medium: Joint Effects
  • 15.2.9 Homogeneous Medium: Effect of Borehole Angle
  • 15.2.10 Homogeneous Isotropic Medium
  • 15.2.11 Homogeneous Medium: Borehole Angle
  • 15.2.12 Uniform Medium With Discontinuities
  • 15.2.13 Large Discontinuous Homogeneous Block: Effect of Joint Properties
  • 15.2.14 Large Block Homogeneous and Anisotropic Media
  • 15.2.15 Heterogeneous Flawed Media (Desiccated Cement)
  • 15.2.16 Heterogeneous Flawed Media: Natural Fort Hays Limestone
  • 15.2.17 Homogeneous Media: Water Blasting
  • 15.2.18 Uniform Media: Cryogenic Fracturing
  • 15.2.19 Homogeneous Medium: Different Fracturing Fluid Viscosities
  • 15.2.20 Heterogeneous Large Block Samples: Effect of Slickwater and Gel
  • 15.2.21 Direct Observation of Fracturing in Small Samples
  • 15.2.22 Heterogeneous Media (Shale and Sandstone): Water, Liquid CO2, and Supercritical CO2
  • 15.3 DISCUSSION
  • 15.3.1 Stress
  • 15.3.2 Anisotropy
  • 15.3.3 Borehole Angle
  • 15.3.4 Discontinuities
  • 15.3.5 Permeability and Fracturing Fluid Viscosity
  • 15.3.6 Different Technologies
  • 15.3.7 Sample Size
  • 15.4 CONCLUSIONS
  • REFERENCES
  • 16 - Fracture Conductivity Under Triaxial Stress Conditions
  • 16.1 INTRODUCTION
  • 16.2 FORMATIONS OVERVIEW
  • 16.3 SAMPLE PREPARATION FOR MEASUREMENTS
  • 16.4 TRIAXIAL TEST EXPERIMENTAL SETUP
  • 16.5 PROPPED FRACTURE CONDUCTIVITY TESTS
  • 16.6 CONCLUSIONS
  • ACKNOWLEDGMENTS
  • REFERENCES
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • X
  • Y
  • Z
  • Back Cover

Dateiformat: ePUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

174,93 €
inkl. 5% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen