High Temperature Oxidation and Corrosion of Metals

 
 
Elsevier Science (Verlag)
  • 2. Auflage
  • |
  • erschienen am 12. Mai 2016
  • |
  • 758 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-08-100119-6 (ISBN)
 

High Temperature Oxidation and Corrosion of Metals, Second Edition, provides a high level understanding of the fundamental mechanisms of high temperature alloy oxidation. It uses this understanding to develop methods of predicting oxidation rates and the way they change with temperature, gas chemistry, and alloy composition.

The book focuses on the design and selection of alloy compositions which provide optimal resistance to attack by corrosive gases, providing a rigorous treatment of the thermodynamics and kinetics underlying high temperature alloy corrosion.

In addition, it emphasizes quantitative calculations for predicting reaction rates and the effects of temperature, oxidant activities, and alloy compositions. Users will find this book to be an indispensable source of information for researchers and students who are dealing with high temperature corrosion.


  • Emphasizes quantitative calculations for predicting reaction rates and the effects of temperature, oxidant activities, and alloy compositions
  • Uses phase diagrams and diffusion paths to analyze and interpret scale structures and internal precipitation distributions
  • Presents a detailed examination of corrosion in industrial gases (water vapor effects, carburization and metal dusting, sulphidation)
  • Contains numerous micrographs, phase diagrams, and tabulations of relevant thermodynamic and kinetic data
  • Combines physical chemistry and materials science methodologies
  • Provides two completely new chapters (chapters 11 and 13), and numerous other updates throughout the text


David Young was educated at the University of Melbourne then worked in Canada for 9 years (University of Toronto, McMaster University, National Research Council of Canada) on high temperature metal-gas reactions. Returning to Australia, he worked for BHP Steel Research then joined the University of New South Wales. There he led the School of Materials Science & Engineering for 15 years, and has carried out extensive work on high temperature corrosion in mixed gas atmospheres.
His work has led to over 350 publications, including the books Diffusion in the Condensed State (with J.S. Kirkaldy), Institute of Metals (1988) and High Temperature Oxidation and Corrosion of Metals, 1st ed., Elsevier (2008). It has been recognized by his election to the Australian Academy of Technological Sciences and Engineering, the U. R. Evans Award, Institute of Corrosion Science & Technology, UK, the High Temperature Materials Outstanding Achievement Award, Electrochemical Society, USA and election as Fellow, Electrochemical Society.
1875-9491
  • Englisch
  • London
  • 20,67 MB
978-0-08-100119-6 (9780081001196)
0081001193 (0081001193)
weitere Ausgaben werden ermittelt
  • Intro
  • Title page
  • Table of Contents
  • Copyright
  • Foreword
  • Preface
  • Abbreviations and Acronyms
  • Symbols
  • Chapter 1. The Nature of High Temperature Oxidation
  • Chapter 2. Enabling Theory
  • Chapter 3. Oxidation of Pure Metals
  • Chapter 6. Alloy Oxidation II: Internal Oxidation
  • Chapter 5. Oxidation of Alloys I: Single Phase Scales
  • Chapter 7. Alloy Oxidation III: Multiphase Scales
  • Chapter 8. Corrosion by Sulphur
  • Chapter 9. Corrosion by Carbon
  • Chapter 10. Corrosion by Carbon Dioxide
  • Chapter 11. Effects of Water Vapour on Oxidation
  • Chapter 4. Mixed Gas Corrosion of Pure Metals
  • Chapter 12. Corrosion in Complex Environments
  • Chapter 14. Alloy Design
  • Chapter 13. Cyclic Oxidation
  • Appendix A. High Temperature Alloys
  • Appendix B. Cation Diffusion Kinetics in Ionic Solids
  • Appendix C. The Error Function
  • Appendix D. Self-Diffusion Coefficients
  • Index
  • 13.1. Introduction
  • 13.2. Alloy Depletion and Scale Rehealing
  • 13.3. Spallation Models
  • 13.4. Combination of Spalling and Depletion Models
  • 13.5. Effects of Experimental Variables
  • 13.6. Describing and Predicting Cyclic Oxidation
  • 14.1. Introduction
  • 14.2. Alloy Design for Resistance to Oxygen
  • 14.3. Design Against Oxide Scale Spallation
  • 14.4. Design for Resistance to Other Corrodents and Mixed Gases
  • 14.5. Future Research
  • 14.6. Fundamental Research
  • 14.7. Conclusion
  • 12.1. Introduction
  • 12.2. Volatilisation by Halogens
  • 12.3. Corrosion by Flue Gases and Solid Chlorides
  • 12.4. Corrosion by Melts
  • 12.5. Managing Complex Corrosion
  • 4.1. Introduction
  • 4.2. Selected Experimental Findings
  • 4.3. Phase Diagrams and Diffusion Paths
  • 4.4. Scale-Gas Interactions
  • 4.5. Transport Processes in Mixed Scales
  • 4.6. Predicting the Outcome of Mixed Gas Reactions
  • 11.1. Introduction
  • 11.2. Volatile Metal Hydroxide Formation
  • 11.3. Scale-Gas Interfacial Processes
  • 11.4. Scale Transport Properties
  • 11.5. Water Vapour Effects on Alumina Growth
  • 11.6. Iron Oxide Scaling
  • 11.7. Void Development in Growing Scales
  • 11.8. Understanding and Controlling Water Vapour Effects
  • 10.1. Introduction
  • 10.2. Carbon Dioxide Corrosion Morphologies
  • 10.3. Thermodynamics and Distribution of Reaction Products
  • 10.4. Mechanism of Breakaway
  • 10.5. Carbon Penetration of Oxide Scales
  • 10.6. Effects of Other Alloy and Gas Components
  • 10.7. Remedial Measures
  • 9.1. Introduction
  • 9.2. Gaseous Carbon Activities
  • 9.3. Carburisation
  • 9.4. Intenal Carburisation of Model Alloys
  • 9.5. Internal Carburisation of Heat-Resisting Alloys
  • 9.6. Metal Dusting of Iron and Ferritic Alloys
  • 9.7. Dusting of Nickel and Austenitic Alloys
  • 9.8. Protection by Oxide Scaling
  • 9.9. Controlling Carbon Corrosion
  • 8.1. Introduction
  • 8.2. Sulphidation of Pure Metals
  • 8.3. Alloying for Sulphidation Protection
  • 8.4. Sulphidation in H2/H2S
  • 8.5. Effects of Temperature and Sulphur Partial Pressure
  • 8.6. The Role of Oxygen
  • 8.7. Internal Sulphidation
  • 8.8. Hot Corrosion
  • 8.9. Achieving Sulphidation Resistance
  • 7.1. Introduction
  • 7.2. Binary Alumina Formers
  • 7.3. Binary Chromia Formers
  • 7.4. Ternary Alloy Oxidation
  • 7.5. Scale Spallation
  • 7.6. Effects of Minor Alloying Additions
  • 7.7. Effects of Secondary Oxidants
  • 7.8. 'Available Space' Model for Duplex Oxide Scale Growth
  • 7.9. Status of Multiphase Scale Growth Theory
  • 5.1. Introduction
  • 5.2. Selected Experimental Results
  • 5.3. Phase Diagrams and Diffusion Paths
  • 5.4. Selective Oxidation of One Alloy Component
  • 5.5. Selective Oxidation of One Alloy Component Under Nonsteady-State Conditions
  • 5.6. Solid Solution Oxide Scales
  • 5.7. Transient Oxidation
  • 5.8. Microstructural Changes in Subsurface Alloy Regions
  • 5.9. Breakdown of Steady-State Scale
  • 5.10. Other Factors Affecting Scale Growth
  • 6.1. Introduction
  • 6.2. Selected Experimental Results
  • 6.3. Internal Oxidation Kinetics in the Absence of External Scaling
  • 6.4. Experimental Verification of Diffusion Model
  • 6.5. Surface Diffusion Effects in the Precipitation Zone
  • 6.6. Internal Precipitates of Low Stability
  • 6.7. Precipitate Nucleation and Growth
  • 6.8. Cellular Precipitation Morphologies
  • 6.9. Multiple Internal Precipitates
  • 6.10. Solute Interactions in the Precipitation Zone
  • 6.11. Transition from Internal to External Oxidation
  • 6.12. Internal Oxidation Beneath a Corroding Alloy Surface
  • 6.13. Volume Expansion in the Internal Precipitation Zone
  • 6.14. Effects of Water Vapour on Internal Oxidation
  • 6.15. Success of Internal Oxidation Theory
  • 3.1. Experimental Findings
  • 3.2. Use of Phase Diagrams
  • 3.3. Point Defects and Nonstoichiometry in Ionic Oxides
  • 3.4. Lattice Species and Structural Units in Ionic Oxides
  • 3.5. Gibbs-Duhem Equation for Defective Solid Oxides
  • 3.6. Lattice Diffusion and Oxide Scaling: Wagner's Model
  • 3.7. Validation of Wagner's Model
  • 3.8. Impurity Effects on Lattice Diffusion
  • 3.9. Microstructural Effects
  • 3.10. Reactions Not Controlled by Solid-State Diffusion
  • 3.11. The Value of Thermodynamic and Kinetic Analysis
  • 2.1. Chemical Thermodynamics
  • 2.2. Chemical Equilibria Between Solids and Gases
  • 2.3. Alloys and Solid Solutions
  • 2.4. Chemical Equilibria Between Alloys and Gases
  • 2.5. Thermodynamics of Diffusion
  • 2.6. Absolute Rate Theory Applied to Lattice Particle Diffusion
  • 2.7. Diffusion in Alloys
  • 2.8. Diffusion Couples and the Measurement of Diffusion Coefficients
  • 2.9. Interfacial Processes and Gas Phase Mass Transfer
  • 2.10. Mechanical Effects: Stresses in Oxide Scales
  • Further Reading
  • 1.1. Metal Loss Due to the Scaling of Steel
  • 1.2. Heating Elements
  • 1.3. Protecting Turbine Engine Components
  • 1.4. Hydrocarbon Cracking Furnaces
  • 1.5. Prediction and Measurement
  • 1.6. Rate Equations
  • 1.7. Reaction Morphology: Specimen Examination
  • 1.8. Summary

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

178,50 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok