High Temperature Oxidation and Corrosion of Metals

 
 
Elsevier Science (Verlag)
  • 2. Auflage
  • |
  • erschienen am 12. Mai 2016
  • |
  • 758 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-08-100119-6 (ISBN)
 

High Temperature Oxidation and Corrosion of Metals, Second Edition, provides a high level understanding of the fundamental mechanisms of high temperature alloy oxidation. It uses this understanding to develop methods of predicting oxidation rates and the way they change with temperature, gas chemistry, and alloy composition.

The book focuses on the design and selection of alloy compositions which provide optimal resistance to attack by corrosive gases, providing a rigorous treatment of the thermodynamics and kinetics underlying high temperature alloy corrosion.

In addition, it emphasizes quantitative calculations for predicting reaction rates and the effects of temperature, oxidant activities, and alloy compositions. Users will find this book to be an indispensable source of information for researchers and students who are dealing with high temperature corrosion.


  • Emphasizes quantitative calculations for predicting reaction rates and the effects of temperature, oxidant activities, and alloy compositions
  • Uses phase diagrams and diffusion paths to analyze and interpret scale structures and internal precipitation distributions
  • Presents a detailed examination of corrosion in industrial gases (water vapor effects, carburization and metal dusting, sulphidation)
  • Contains numerous micrographs, phase diagrams, and tabulations of relevant thermodynamic and kinetic data
  • Combines physical chemistry and materials science methodologies
  • Provides two completely new chapters (chapters 11 and 13), and numerous other updates throughout the text


David Young was educated at the University of Melbourne then worked in Canada for 9 years (University of Toronto, McMaster University, National Research Council of Canada) on high temperature metal-gas reactions. Returning to Australia, he worked for BHP Steel Research then joined the University of New South Wales. There he led the School of Materials Science & Engineering for 15 years, and has carried out extensive work on high temperature corrosion in mixed gas atmospheres.
His work has led to over 350 publications, including the books Diffusion in the Condensed State (with J.S. Kirkaldy), Institute of Metals (1988) and High Temperature Oxidation and Corrosion of Metals, 1st ed., Elsevier (2008). It has been recognized by his election to the Australian Academy of Technological Sciences and Engineering, the U. R. Evans Award, Institute of Corrosion Science & Technology, UK, the High Temperature Materials Outstanding Achievement Award, Electrochemical Society, USA and election as Fellow, Electrochemical Society.
1875-9491
  • Englisch
  • Oxford
  • |
  • Großbritannien
  • 20,67 MB
978-0-08-100119-6 (9780081001196)
0081001193 (0081001193)
weitere Ausgaben werden ermittelt
  • Front Cover
  • High Temperature Oxidation and Corrosion of Metals
  • High Temperature Oxidation and Corrosion of Metals
  • Copyright
  • Contents
  • Foreword
  • Preface
  • Abbreviations and Acronyms
  • Symbols
  • 1 - The Nature of High Temperature Oxidation
  • 1.1 METAL LOSS DUE TO THE SCALING OF STEEL
  • 1.2 HEATING ELEMENTS
  • 1.3 PROTECTING TURBINE ENGINE COMPONENTS
  • 1.4 HYDROCARBON CRACKING FURNACES
  • 1.5 PREDICTION AND MEASUREMENT
  • 1.5.1 Oxidation Rates
  • 1.6 RATE EQUATIONS
  • 1.6.1 Linear Kinetics
  • 1.6.2 Diffusion Controlled Processes and Parabolic Kinetics
  • 1.6.3 Diffusion and Phase Boundary Processes Combined
  • 1.6.4 Volatilisation
  • 1.6.5 Thin Oxide Film Growth
  • 1.7 REACTION MORPHOLOGY: SPECIMEN EXAMINATION
  • 1.8 SUMMARY
  • REFERENCES
  • 2 - Enabling Theory
  • 2.1 CHEMICAL THERMODYNAMICS
  • 2.1.1 Chemical Potential and Composition
  • 2.1.2 Chemical Equilibrium in Gas Mixtures
  • 2.2 CHEMICAL EQUILIBRIA BETWEEN SOLIDS AND GASES
  • 2.2.1 Chemical Equilibria Involving Multiple Solids
  • 2.2.2 Gases Containing Two Reactants
  • 2.3 ALLOYS AND SOLID SOLUTIONS
  • 2.3.1 Dissolution of Gases in Metals
  • 2.4 CHEMICAL EQUILIBRIA BETWEEN ALLOYS AND GASES
  • 2.4.1 Equilibria Between Alloys and Single Oxide
  • 2.4.2 Equilibria Between Alloys and Multiple Oxides
  • 2.5 THERMODYNAMICS OF DIFFUSION
  • 2.5.1 Driving Forces
  • 2.5.2 Point Defects
  • 2.6 ABSOLUTE RATE THEORY APPLIED TO LATTICE PARTICLE DIFFUSION
  • 2.7 DIFFUSION IN ALLOYS
  • 2.7.1 Selective Oxidation and Alloy Depletion
  • 2.7.2 Origins of Cross-Effects
  • 2.7.3 Kirkendall Effect
  • 2.8 DIFFUSION COUPLES AND THE MEASUREMENT OF DIFFUSION COEFFICIENTS
  • 2.8.1 Diffusion Data for Alloys
  • 2.9 INTERFACIAL PROCESSES AND GAS PHASE MASS TRANSFER
  • 2.9.1 Gas Adsorption
  • 2.9.2 Gas Phase Mass Transfer at Low Pressure
  • 2.9.3 Mass Transfer in Dilute Gases
  • 2.10 MECHANICAL EFFECTS: STRESSES IN OXIDE SCALES
  • 2.10.1 Stresses Developed During Oxidation
  • 2.10.2 Stresses Developed During Temperature Change
  • FURTHER READING
  • Chemical Thermodynamics and Phase Equilibria
  • Diffusion in Solids
  • Point Defects in Solids
  • Mass Transfer in Fluids
  • Mechanical Behaviour of Scales
  • REFERENCES
  • 3 - Oxidation of Pure Metals
  • 3.1 EXPERIMENTAL FINDINGS
  • 3.2 USE OF PHASE DIAGRAMS
  • 3.3 POINT DEFECTS AND NONSTOICHIOMETRY IN IONIC OXIDES
  • 3.4 LATTICE SPECIES AND STRUCTURAL UNITS IN IONIC OXIDES
  • 3.5 GIBBS-DUHEM EQUATION FOR DEFECTIVE SOLID OXIDES
  • 3.6 LATTICE DIFFUSION AND OXIDE SCALING: WAGNER'S MODEL
  • 3.7 VALIDATION OF WAGNER'S MODEL
  • 3.7.1 Oxidation of Nickel
  • 3.7.2 Oxidation of Cobalt
  • 3.7.3 Oxidation of Iron
  • 3.7.4 Sulphidation of Iron
  • 3.7.5 Effects of Oxidant Partial Pressure on the Parabolic Rate Constant
  • 3.7.6 Effect of Temperature on the Parabolic Rate Constant
  • 3.7.7 Other Systems
  • 3.7.8 Utility of Wagner's Theory
  • 3.8 IMPURITY EFFECTS ON LATTICE DIFFUSION
  • 3.9 MICROSTRUCTURAL EFFECTS
  • 3.9.1 Grain Boundary Diffusion
  • 3.9.2 Grain Boundary and Lattice Diffusion in Chromia Scales
  • 3.9.3 Multilayer Scale Growth
  • 3.9.4 Development of Macroscopic Defects and Scale Detachment
  • 3.10 REACTIONS NOT CONTROLLED BY SOLID-STATE DIFFUSION
  • 3.10.1 Oxidation of Iron at Low pO2 to Form Wüstite Only
  • 3.10.2 Oxidation of Silicon
  • 3.11 THE VALUE OF THERMODYNAMIC AND KINETIC ANALYSIS
  • REFERENCES
  • 4 - Mixed Gas Corrosion of Pure Metals
  • 4.1 INTRODUCTION
  • 4.2 SELECTED EXPERIMENTAL FINDINGS
  • 4.3 PHASE DIAGRAMS AND DIFFUSION PATHS
  • 4.3.1 Scaling of Chromium in Oxidising-Nitriding and Oxidising-Carburising Gases
  • 4.3.2 Scaling of Chromium in Oxidising-Sulphidising-Carburising Gases
  • 4.3.3 Scaling of Iron in Oxidising-Sulphidising Gases
  • 4.3.4 Scaling of Nickel in Oxidising-Sulphidising Gases
  • 4.4 SCALE-GAS INTERACTIONS
  • 4.4.1 Identity of Reactant Species
  • 4.4.2 Rate Determining Processes in SO2 Reactions
  • 4.4.3 Production of Metastable Sulphide
  • 4.4.4 Independent Oxide and Sulphide Growth in SO2
  • 4.5 TRANSPORT PROCESSES IN MIXED SCALES
  • 4.5.1 Effect of Preoxidation on the Reaction With Sulphidising-Oxidising Gases
  • 4.5.2 Solid-State Diffusion of Sulphur
  • 4.5.3 Gas Diffusion Through Scales
  • 4.5.4 Scale Penetration by Multiple Gas Species
  • 4.5.5 Metal Transport Processes
  • 4.6 PREDICTING THE OUTCOME OF MIXED GAS REACTIONS
  • REFERENCES
  • 5 - Oxidation of Alloys I: Single Phase Scales
  • 5.1 INTRODUCTION
  • 5.2 SELECTED EXPERIMENTAL RESULTS
  • 5.3 PHASE DIAGRAMS AND DIFFUSION PATHS
  • 5.4 SELECTIVE OXIDATION OF ONE ALLOY COMPONENT
  • 5.5 SELECTIVE OXIDATION OF ONE ALLOY COMPONENT UNDER NONSTEADY-STATE CONDITIONS
  • 5.6 SOLID SOLUTION OXIDE SCALES
  • 5.6.1 Modelling Diffusion in Solid Solution Scales
  • 5.7 TRANSIENT OXIDATION
  • 5.7.1 Transient Behaviour Associated With Alumina Phase Transformations
  • 5.8 MICROSTRUCTURAL CHANGES IN SUBSURFACE ALLOY REGIONS
  • 5.8.1 Subsurface Void Formation
  • 5.8.2 Scale-Alloy Interface Stability
  • 5.8.3 Phase Dissolution
  • 5.8.4 New Phase Formation
  • 5.8.5 Other Transformations
  • 5.9 BREAKDOWN OF STEADY-STATE SCALE
  • 5.9.1 An Approximate Treatment of Depletion
  • 5.10 OTHER FACTORS AFFECTING SCALE GROWTH
  • 5.10.1 Environmental Effects on Alumina Phase Transformations
  • REFERENCES
  • 6 - Alloy Oxidation II: Internal Oxidation
  • 6.1 INTRODUCTION
  • 6.2 SELECTED EXPERIMENTAL RESULTS
  • 6.3 INTERNAL OXIDATION KINETICS IN THE ABSENCE OF EXTERNAL SCALING
  • 6.4 EXPERIMENTAL VERIFICATION OF DIFFUSION MODEL
  • 6.5 SURFACE DIFFUSION EFFECTS IN THE PRECIPITATION ZONE
  • 6.6 INTERNAL PRECIPITATES OF LOW STABILITY
  • 6.7 PRECIPITATE NUCLEATION AND GROWTH
  • 6.8 CELLULAR PRECIPITATION MORPHOLOGIES
  • 6.9 MULTIPLE INTERNAL PRECIPITATES
  • 6.10 SOLUTE INTERACTIONS IN THE PRECIPITATION ZONE
  • 6.11 TRANSITION FROM INTERNAL TO EXTERNAL OXIDATION
  • 6.12 INTERNAL OXIDATION BENEATH A CORRODING ALLOY SURFACE
  • 6.13 VOLUME EXPANSION IN THE INTERNAL PRECIPITATION ZONE
  • 6.14 EFFECTS OF WATER VAPOUR ON INTERNAL OXIDATION
  • 6.15 SUCCESS OF INTERNAL OXIDATION THEORY
  • REFERENCES
  • 7 - Alloy Oxidation III: Multiphase Scales
  • 7.1 INTRODUCTION
  • 7.2 BINARY ALUMINA FORMERS
  • 7.2.1 The Ni-Al System
  • 7.2.2 The Fe-Al System
  • 7.2.3 Transport Processes in Alumina Scales
  • 7.3 BINARY CHROMIA FORMERS
  • 7.3.1 The Ni-Cr and Fe-Cr Systems
  • 7.3.2 Transport Processes in Chromia Scales
  • 7.4 TERNARY ALLOY OXIDATION
  • 7.4.1 Fe-Ni-Cr Alloys
  • 7.4.2 Ni-Pt-Al Alloys
  • 7.4.3 Ni-Cr-Al Alloys
  • 7.4.4 Fe-Cr-Al Alloys
  • 7.4.5 Third Element Effect
  • 7.5 SCALE SPALLATION
  • 7.5.1 The Sulphur Effect
  • 7.5.2 Interfacial Voids and Scale Detachment
  • 7.5.3 Reactive Element Effects
  • 7.6 EFFECTS OF MINOR ALLOYING ADDITIONS
  • 7.6.1 Silicon Effects
  • 7.6.2 Manganese Effects
  • 7.6.3 Titanium Effects
  • 7.6.4 Other Effects
  • 7.7 EFFECTS OF SECONDARY OXIDANTS
  • 7.8 'AVAILABLE SPACE' MODEL FOR DUPLEX OXIDE SCALE GROWTH
  • 7.9 STATUS OF MULTIPHASE SCALE GROWTH THEORY
  • REFERENCES
  • 8 - Corrosion by Sulphur
  • 8.1 INTRODUCTION
  • 8.2 SULPHIDATION OF PURE METALS
  • 8.2.1 Sulphidation Kinetics and Rates
  • 8.2.2 Growth of NiAs-Type Sulphide Scales
  • 8.2.3 Sulphidation of Manganese
  • 8.2.4 Sulphidation of Refractory Metals
  • 8.3 ALLOYING FOR SULPHIDATION PROTECTION
  • 8.3.1 Alloying With Chromium
  • 8.3.2 Alloying With Aluminium
  • 8.3.3 M-Cr-Al Alloys
  • 8.3.4 Alloying With Manganese
  • 8.3.5 Alloying With Molybdenum
  • 8.3.6 Refractory Metal Alloys
  • 8.4 SULPHIDATION IN H2/H2S
  • 8.5 EFFECTS OF TEMPERATURE AND SULPHUR PARTIAL PRESSURE
  • 8.6 THE ROLE OF OXYGEN
  • 8.7 INTERNAL SULPHIDATION
  • 8.8 HOT CORROSION
  • 8.8.1 Phenomenology of Sulphate-Induced Hot Corrosion
  • 8.8.2 Molten Salt Chemistry
  • 8.8.3 Fluxing Mechanisms
  • 8.8.4 Type I and Type II Hot Corrosion
  • 8.9 ACHIEVING SULPHIDATION RESISTANCE
  • REFERENCES
  • 9 - Corrosion by Carbon
  • 9.1 INTRODUCTION
  • 9.2 GASEOUS CARBON ACTIVITIES
  • 9.3 CARBURISATION
  • 9.4 INTENAL CARBURISATION OF MODEL ALLOYS
  • 9.4.1 Reaction Morphologies and Thermodynamics
  • 9.4.2 Carburisation Kinetics
  • 9.4.3 Carbide Microstructures and Distributions
  • 9.5 INTERNAL CARBURISATION OF HEAT-RESISTING ALLOYS
  • 9.5.1 Effect of Carbon
  • 9.5.2 Effect of Molybdenum
  • 9.5.3 Effect of Silicon
  • 9.5.4 Effect of Niobium and Reactive Elements
  • 9.5.5 Effect of Aluminium
  • 9.5.6 Alloying for Carburisation Protection
  • 9.6 METAL DUSTING OF IRON AND FERRITIC ALLOYS
  • 9.6.1 Metal Dusting of Iron
  • 9.6.2 Iron Dusting in the Absence of Cementite
  • 9.6.3 Effects of Temperature and Gas Composition on Iron Dusting
  • 9.6.4 Dusting of Low Alloy Steels
  • 9.6.5 Dusting of Ferritic Chromium Steels
  • 9.6.6 Dusting of FeAl and FeCrAl Alloys
  • 9.7 DUSTING OF NICKEL AND AUSTENITIC ALLOYS
  • 9.7.1 Metal Dusting of Nickel
  • 9.7.2 Dusting of Nickel Alloys in the Absence of Oxide Scales
  • 9.7.3 Effects of Temperature and Gas Composition on Nickel Dusting
  • 9.7.4 Dusting of Austenitic Alloys
  • 9.8 PROTECTION BY OXIDE SCALING
  • 9.8.1 Protection by Adsorbed Sulphur
  • 9.8.2 Protection by Coatings
  • 9.9 CONTROLLING CARBON CORROSION
  • REFERENCES
  • 10 - Corrosion by Carbon Dioxide
  • 10.1 INTRODUCTION
  • 10.2 CARBON DIOXIDE CORROSION MORPHOLOGIES
  • 10.2.1 Iron, Carbon Steels and Low Alloy Steels
  • 10.2.2 Martensitic Chromia-Forming Steels
  • 10.2.3 Ferritic Chromia Formers
  • 10.2.4 Other Alloys
  • 10.2.5 Corrosion in High Pressure CO2
  • 10.2.6 Summary of Findings
  • 10.3 THERMODYNAMICS AND DISTRIBUTION OF REACTION PRODUCTS
  • 10.3.1 Oxide Scale Constitution
  • 10.3.2 Internal Carburisation
  • 10.3.3 Carbon Deposition
  • 10.4 MECHANISM OF BREAKAWAY
  • 10.4.1 Iron Oxide Nodule Nucleation
  • 10.4.2 Mass Transport Processes
  • 10.4.3 Carbon Deposition and Breakaway Corrosion at High Pressures
  • 10.5 CARBON PENETRATION OF OXIDE SCALES
  • 10.5.1 Carbon Penetration of Iron-Rich Oxide Scales
  • 10.5.2 Nonsteady-State Carburisation Under Iron Oxide Scales
  • 10.5.3 Carbon Penetration of Chromia Scales
  • 10.6 EFFECTS OF OTHER ALLOY AND GAS COMPONENTS
  • 10.6.1 Silicon Effects
  • 10.6.2 Manganese Effects
  • 10.6.3 Gas Composition Effects
  • 10.6.4 Water Vapour Effects
  • 10.6.5 Effects of SO2 and O2
  • 10.7 REMEDIAL MEASURES
  • REFERENCES
  • 11 - Effects of Water Vapour on Oxidation
  • 11.1 INTRODUCTION
  • 11.2 VOLATILE METAL HYDROXIDE FORMATION
  • 11.2.1 Chromia Volatilisation
  • 11.2.2 Chromia Volatilisation in Steam
  • 11.2.3 Effects of Chromia Volatilisation
  • 11.2.4 Silica Volatilisation
  • 11.2.5 Silicon Volatilisation
  • 11.2.6 Other Oxides
  • 11.3 SCALE-GAS INTERFACIAL PROCESSES
  • 11.4 SCALE TRANSPORT PROPERTIES
  • 11.4.1 Gas Transport
  • 11.4.2 Molecular Transport
  • 11.4.3 Molecular Transport in Chromia Scales
  • 11.4.4 Ionic Transport
  • 11.4.5 Relative Importance of Different Water Vapour Effects on Chromia Scaling
  • 11.5 WATER VAPOUR EFFECTS ON ALUMINA GROWTH
  • 11.6 IRON OXIDE SCALING
  • 11.7 VOID DEVELOPMENT IN GROWING SCALES
  • 11.8 UNDERSTANDING AND CONTROLLING WATER VAPOUR EFFECTS
  • REFERENCES
  • 12 - Corrosion in Complex Environments
  • 12.1 INTRODUCTION
  • 12.2 VOLATILISATION BY HALOGENS
  • 12.2.1 Corrosion by Chlorine
  • 12.2.2 Corrosion by Oxygen-Chlorine Mixtures
  • 12.2.3 Corrosion by HCl
  • 12.2.4 Corrosion by HCl Plus Oxygen
  • 12.2.5 Corrosion by HCl Plus Water Vapour
  • 12.3 CORROSION BY FLUE GASES AND SOLID CHLORIDES
  • 12.4 CORROSION BY MELTS
  • 12.4.1 Molten Halides
  • 12.4.1.1 Fluxing in Chloride Melts
  • 12.4.2 Oxygenated Melts
  • 12.4.3 Corrosion in Nitrate/Nitrite Melts
  • 12.4.4 Corrosion in Carbonate Melts
  • 12.4.4.1 Nickel Oxide Corrosion by Carbonate Melts
  • 12.4.4.2 Iron and Chromium in Carbonate Melts
  • 12.4.4.3 Chromia-Forming Alloys in Carbonate Melts
  • 12.5 MANAGING COMPLEX CORROSION
  • REFERENCES
  • 13 - Cyclic Oxidation
  • 13.1 INTRODUCTION
  • 13.2 ALLOY DEPLETION AND SCALE REHEALING
  • 13.3 SPALLATION MODELS
  • 13.4 COMBINATION OF SPALLING AND DEPLETION MODELS
  • 13.5 EFFECTS OF EXPERIMENTAL VARIABLES
  • 13.5.1 Temperature Cycle Parameters
  • 13.5.2 Continuous Thermogravimetric Analysis
  • 13.5.3 Compositions of Alloys and Environment
  • 13.6 DESCRIBING AND PREDICTING CYCLIC OXIDATION
  • REFERENCES
  • 14 - Alloy Design
  • 14.1 INTRODUCTION
  • 14.2 ALLOY DESIGN FOR RESISTANCE TO OXYGEN
  • 14.3 DESIGN AGAINST OXIDE SCALE SPALLATION
  • 14.4 DESIGN FOR RESISTANCE TO OTHER CORRODENTS AND MIXED GASES
  • 14.5 FUTURE RESEARCH
  • 14.5.1 Gas Turbines
  • 14.5.2 Electric Power Generation
  • 14.5.3 Petrochemical and Chemical Process Industries
  • 14.5.4 Greenhouse Gas Emission Control
  • 14.6 FUNDAMENTAL RESEARCH
  • 14.6.1 Grain Boundaries in Oxide Scales
  • 14.6.2 Water Vapour Effects
  • 14.6.3 Nucleation and Growth Phenomena
  • 14.7 CONCLUSION
  • REFERENCES
  • A - High Temperature Alloys
  • B - Cation Diffusion Kinetics in Ionic Solids
  • B.1 Thermodynamic Treatment
  • B.2 Evaluation of Onsager Coefficients
  • B.2.1 No Oxygen Potential Gradient
  • B.2.2 Oxygen Potential Gradient
  • B.2.3 Chemical and Tracer Diffusion in Ionic Solids
  • REFERENCE
  • C - The Error Function
  • REFERENCE
  • D - Self-Diffusion Coefficients
  • REFERENCES
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • K
  • L
  • M
  • N
  • O
  • P
  • R
  • S
  • T
  • U
  • V
  • W
  • Y
  • Z
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

178,50 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok