Recent Advances in Polyphenol Research, Volume 5

 
 
Wiley-Blackwell (Verlag)
  • erschienen am 29. November 2016
  • |
  • 376 Seiten
 
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-1-118-88329-7 (ISBN)
 
Plant polyphenols are secondary metabolites that constitute one of the most common and widespread groups of natural products. They express a large and diverse panel of biological activities including beneficial effects on both plants and humans. Many polyphenols, from their structurally simplest representatives to their oligo/polymeric versions (also referred to as vegetable tannins), are notably known as phytoestrogens, plant pigments, potent antioxidants, and protein interacting agents.
Sponsored by the scholarly society Groupe Polyphénols, this publication, which is the fifth volume in this highly regarded Recent Advances in Polyphenol Research series, is edited by Kumi Yoshida, Véronique Cheynier and Stéphane Quideau. They have once again, like their predecessors, put together an impressive collection of cutting-edge chapters written by expert scientists, internationally respected in their respective field of polyphenol sciences. This Volume 5 highlights some of the latest information and opinion on the following major research topics about polyphenols:
* Chemistry, physicochemistry & materials science
* Biosynthesis, genetic & metabolic engineering
* Plant & ecosystem, lignocellulosic biomass
* Food, nutrition & health
* Natural medicine & Kampo
* Tannins & their functions
Chemists, biochemists, plant scientists, pharmacognosists and pharmacologists, biologists, ecologists, food scientists and nutritionists will all find this book an invaluable resource. Libraries in all universities and research institutions where these disciplines are studied and taught should have copies on their bookshelves.
1. Auflage
  • Englisch
  • Hoboken
  • |
  • Großbritannien
John Wiley & Sons Inc
  • Für Beruf und Forschung
  • 18,13 MB
978-1-118-88329-7 (9781118883297)
1118883292 (1118883292)
weitere Ausgaben werden ermittelt
1 - Title Page [Seite 5]
2 - Copyright Page [Seite 6]
3 - Contents [Seite 9]
4 - Contributors [Seite 17]
5 - Preface [Seite 21]
6 - Chapter 1 The Physical Chemistry of Polyphenols: Insights into the Activity of Polyphenols in Humans at the Molecular Level [Seite 25]
6.1 - 1.1 Introduction [Seite 25]
6.2 - 1.2 Molecular complexation of polyphenols [Seite 28]
6.2.1 - 1.2.1 Polyphenol-protein binding [Seite 28]
6.2.1.1 - 1.2.1.1 Interactions in the digestive tract [Seite 29]
6.2.1.2 - 1.2.1.2 Interactions beyond intestinal absorption [Seite 30]
6.2.2 - 1.2.2 Interactions with membranes [Seite 33]
6.3 - 1.3 Polyphenols as electron donors [Seite 35]
6.3.1 - 1.3.1 The physicochemical bases of polyphenol-to-ROS electron transfer [Seite 36]
6.3.1.1 - 1.3.1.1 Thermodynamics descriptors [Seite 36]
6.3.1.2 - 1.3.1.2 Kinetics of hydrogen atom transfer [Seite 38]
6.3.1.3 - 1.3.1.3 Kinetics and mechanisms [Seite 39]
6.3.2 - 1.3.2 ROS scavenging by polyphenols in the gastrointestinal tract [Seite 44]
6.4 - 1.4 Polyphenols as ligands for metal ions [Seite 45]
6.4.1 - 1.4.1 Interactions of polyphenols with iron and copper ions [Seite 46]
6.4.2 - 1.4.2 A preliminary theoretical study of iron-polyphenol binding [Seite 49]
6.4.2.1 - 1.4.2.1 Charge states, spin states, and geometries [Seite 49]
6.4.2.2 - 1.4.2.2 Oxidation of the bideprotonated catechol [Seite 50]
6.5 - 1.5 Conclusions [Seite 51]
6.6 - References [Seite 52]
7 - Chapter 2 Polyphenols in Bryophytes: Structures, Biological Activities, and Bio- and Total Syntheses [Seite 60]
7.1 - 2.1 Introduction [Seite 60]
7.2 - 2.2 Distribution of cyclic and acyclic bis-bibenzyls in Marchantiophyta (liverworts) [Seite 61]
7.3 - 2.3 Biosynthesis of bis-bibenzyls [Seite 63]
7.4 - 2.4 The structures of bis-bibenzyls and their total synthesis [Seite 74]
7.5 - 2.5 Biological activity of bis-bibenzyls [Seite 82]
7.6 - 2.6 Conclusions [Seite 84]
7.7 - Acknowledgments [Seite 85]
7.8 - References [Seite 85]
8 - Chapter 3 Oxidation Mechanism of Polyphenols and Chemistry of Black Tea [Seite 91]
8.1 - 3.1 Introduction [Seite 91]
8.2 - 3.2 Catechin oxidation and production of theaflavins [Seite 95]
8.3 - 3.3 Theasinensins [Seite 97]
8.4 - 3.4 Coupled oxidation mechanism [Seite 99]
8.5 - 3.5 Bicyclo[3.2.1]octane intermediates [Seite 101]
8.6 - 3.6 Structures of catechin oxidation products [Seite 102]
8.7 - 3.7 Oligomeric oxidation products [Seite 106]
8.8 - 3.8 Conclusions [Seite 107]
8.9 - Acknowledgments [Seite 109]
8.10 - References [Seite 109]
9 - Chapter 4 A Proteomic-Based Quantitative Analysis of the Relationship Between Monolignol Biosynthetic Protein Abundance and Lignin Content Using Transgenic Populus trichocarpa [Seite 113]
9.1 - 4.1 Introduction [Seite 114]
9.2 - 4.2 Results [Seite 118]
9.2.1 - 4.2.1 Production of transgenic trees downregulated for genes in monolignol biosynthesis [Seite 118]
9.2.2 - 4.2.2 Absolute quantification of protein abundance [Seite 119]
9.2.3 - 4.2.3 Variation in protein abundance in wild-type and transgenic plants [Seite 120]
9.2.4 - 4.2.4 Variation in lignin content [Seite 120]
9.2.5 - 4.2.5 Relationship of lignin content and protein abundance [Seite 122]
9.3 - 4.3 Discussion [Seite 125]
9.4 - 4.4 Materials and methods [Seite 126]
9.4.1 - 4.4.1 Production of transgenic trees [Seite 126]
9.4.2 - 4.4.2 Proteomic analysis [Seite 127]
9.4.3 - 4.4.3 Lignin quantification [Seite 128]
9.4.4 - 4.4.4 Statistical analysis [Seite 128]
9.5 - References [Seite 128]
10 - Chapter 5 Monolignol Biosynthesis and Regulation in Grasses [Seite 132]
10.1 - 5.1 Introduction [Seite 132]
10.2 - 5.2 Unique cell walls in grasses [Seite 133]
10.3 - 5.3 Lignin deposition in grasses [Seite 134]
10.4 - 5.4 Monolignol biosynthesis in grasses [Seite 135]
10.4.1 - 5.4.1 Proposed pathway for monolignol biosynthesis [Seite 135]
10.4.2 - 5.4.2 Monolignol biosynthetic genes in grasses [Seite 136]
10.4.3 - 5.4.3 Functional genomics of monolignol biosynthesis in grass species [Seite 138]
10.5 - 5.5 Regulation of monolignol biosynthesis in grasses [Seite 138]
10.5.1 - 5.5.1 Lignin regulation in secondary cell wall biosynthesis [Seite 138]
10.5.2 - 5.5.2 Repressor genes of monolignol biosynthesis in grasses [Seite 141]
10.5.3 - 5.5.3 Regulation of monolignol biosynthesis under stress [Seite 142]
10.6 - 5.6 Remarks [Seite 143]
10.7 - Acknowledgments [Seite 143]
10.8 - References [Seite 144]
11 - Chapter 6 Creation of Flower Color Mutants Using Ion Beams and a Comprehensive Analysis of Anthocyanin Composition and Genetic Background [Seite 151]
11.1 - 6.1 Introduction [Seite 151]
11.2 - 6.2 Induction of flower color mutants by ion beams [Seite 153]
11.3 - 6.3 Mutagenic effects and the molecular nature of the mutations [Seite 155]
11.4 - 6.4 Comprehensive analyses of flower color, pigments, and associated genes in fragrant cyclamen [Seite 155]
11.5 - 6.5 Mutagenesis and screening [Seite 157]
11.5.1 - 6.5.1 Yellow mutants [Seite 158]
11.5.2 - 6.5.2 Red-purple mutants [Seite 159]
11.5.3 - 6.5.3 White mutants [Seite 159]
11.5.4 - 6.5.4 Deeper color mutants [Seite 160]
11.6 - 6.6 Genetic background and the obtained mutants [Seite 160]
11.7 - 6.7 Carnations with peculiar glittering colors [Seite 161]
11.8 - 6.8 Conclusions [Seite 163]
11.9 - Acknowledgments [Seite 164]
11.10 - References [Seite 164]
12 - Chapter 7 Flavonols Regulate Plant Growth and Development through Regulation of Auxin Transport and Cellular Redox Status [Seite 167]
12.1 - 7.1 Introduction [Seite 167]
12.2 - 7.2 The flavonoids and their biosynthetic pathway [Seite 168]
12.3 - 7.3 Flavonoids affect root elongation and gravitropism through alteration of auxin transport [Seite 170]
12.4 - 7.4 Mechanisms by which flavonols regulate IAA transport [Seite 173]
12.5 - 7.5 Lateral root formation [Seite 175]
12.6 - 7.6 Cotyledon, trichome, and root hair development [Seite 176]
12.7 - 7.7 Inflorescence architecture [Seite 178]
12.8 - 7.8 Fertility and pollen development [Seite 178]
12.9 - 7.9 Flavonols modulate ROS signaling in guard cells to regulate stomatal aperture [Seite 179]
12.10 - 7.10 Transcriptional machinery that controls synthesis of flavonoids [Seite 181]
12.11 - 7.11 Hormonal controls of flavonoid synthesis [Seite 184]
12.12 - 7.12 Flavonoid synthesis is regulated by light [Seite 185]
12.13 - 7.13 Conclusions [Seite 186]
12.14 - Acknowledgments [Seite 186]
12.15 - References [Seite 187]
13 - Chapter 8 Structure of Polyacylated Anthocyanins and Their UV Protective Effect [Seite 195]
13.1 - 8.1 Introduction [Seite 195]
13.2 - 8.2 Occurrence and structure of polyacylated anthocyanins in blue flowers [Seite 197]
13.2.1 - 8.2.1 Searching for polyacylated anthocyanins [Seite 199]
13.2.2 - 8.2.2 Isolation and structural determination of polyacylated anthocyanins [Seite 200]
13.2.2.1 - 8.2.2.1 Structural determination of phacelianin and tecophilin [Seite 201]
13.3 - 8.3 Molecular associations of polyacylated anthocyanins in blue flower petals [Seite 202]
13.3.1 - 8.3.1 Intermolecular associations of anthocyanins [Seite 203]
13.3.2 - 8.3.2 Intramolecular associations of anthocyanins [Seite 204]
13.3.3 - 8.3.3 Coexistence of inter- and intramolecular associations involved in the blue coloration [Seite 206]
13.4 - 8.4 UV protection of polyacylated anthocyanins from solar radiation [Seite 207]
13.4.1 - 8.4.1 E,Z-isomerization of cinnamoyl derivative residues in polyacylated anthocyanins [Seite 208]
13.4.2 - 8.4.2 UV protective effect of polyacylated anthocyanins [Seite 210]
13.5 - 8.5 Conclusions [Seite 211]
13.6 - References [Seite 212]
14 - Chapter 9 The Involvement of Anthocyanin-Rich Foods in Retinal Damage [Seite 217]
14.1 - 9.1 Introduction [Seite 217]
14.2 - 9.2 Anthocyanin-rich foods for eye health [Seite 219]
14.3 - 9.3 Experimental models to mimic eye diseases and the effect of anthocyanin?rich foods [Seite 220]
14.3.1 - 9.3.1 3-(4-Morpholinyl) sydnonimine hydrochloride (SIN-1)-induced and N-methyl-d-aspartate receptor (NMDA)-induced retinal ganglion cell damage models to mimic glaucoma in vitro and in vivo [Seite 220]
14.3.2 - 9.3.2 Vascular endothelial growth factor (VEGF)-induced angiogenesis models that mimic diabetic retinopathy in vitro and in vivo [Seite 222]
14.3.3 - 9.3.3 Light-induced retinal damage models to mimic AMD in vitro and in vivo [Seite 223]
14.4 - 9.4 Conclusions [Seite 225]
14.5 - References [Seite 227]
15 - Chapter 10 Prevention and Treatment of Diabetes Using Polyphenols via Activation of AMP-Activated Protein Kinase and Stimulation of Glucagon-like Peptide-1 Secretion [Seite 230]
15.1 - 10.1 Introduction [Seite 230]
15.2 - 10.2 Activation of AMPK and metabolic change [Seite 231]
15.2.1 - 10.2.1 Activation of AMPK [Seite 231]
15.2.2 - 10.2.2 Dietary factors that exert diabetes-preventing and -suppressing effects through the activation of AMPK [Seite 232]
15.2.2.1 - 10.2.2.1 Blueberry (bilberry) [Seite 233]
15.2.2.2 - 10.2.2.2 Black soybean [Seite 234]
15.3 - 10.3 GLP-1 action and diabetes prevention/suppression [Seite 236]
15.3.1 - 10.3.1 GLP-1 action [Seite 236]
15.3.2 - 10.3.2 Dietary factors that promote GLP-1 secretion [Seite 237]
15.3.2.1 - 10.3.2.1 Curcumin [Seite 238]
15.3.2.2 - 10.3.2.2 Edible young leaves of sweet potato (culinary sweet potato leaves) [Seite 241]
15.3.2.3 - 10.3.2.3 Delphinidin 3-rutinoside (D3R) [Seite 242]
15.4 - 10.4 Future issues and prospects [Seite 244]
15.5 - References [Seite 246]
16 - Chapter 11 Beneficial Vascular Responses to Proanthocyanidins: Critical Assessment of Plant-Based Test Materials and Insight into the Signaling Pathways [Seite 250]
16.1 - 11.1 Introduction [Seite 251]
16.2 - 11.2 Appraisal of test materials [Seite 252]
16.2.1 - 11.2.1 Analytical challenges of proanthocyanidin composition [Seite 253]
16.2.2 - 11.2.2 Chemical data on proanthocyanidin-containing materials [Seite 254]
16.3 - 11.3 Endothelial dysfunction [Seite 257]
16.4 - 11.4 In vitro test systems [Seite 258]
16.5 - 11.5 Vasorelaxant mechanisms [Seite 259]
16.5.1 - 11.5.1 Endothelium-dependent vasorelaxation [Seite 259]
16.5.2 - 11.5.2 eNOS-NO-cGMP signaling pathway [Seite 259]
16.5.2.1 - 11.5.2.1 Key role of the NO-cGMP signaling pathway [Seite 260]
16.5.2.2 - 11.5.2.2 Activation of eNOS via the phosphatidylinositol-3-kinase (PI3K)/Akt pathway [Seite 266]
16.5.2.3 - 11.5.2.3 Role of reactive oxygen species and redox-sensitive kinases [Seite 267]
16.5.3 - 11.5.3 Eicosanoid-mediated vasorelaxation [Seite 269]
16.5.4 - 11.5.4 Endothelium-derived hyperpolarizing signaling cascade [Seite 269]
16.5.4.1 - 11.5.4.1 Modulation of K+ channel functions [Seite 271]
16.5.4.2 - 11.5.4.2 Ca2+ signaling events and modulation of Ca2+ channel functions [Seite 272]
16.6 - 11.6 Bioavailability and metabolic transformation: the missing link in the evidence to action in the body [Seite 273]
16.7 - 11.7 Conclusions [Seite 274]
16.8 - References [Seite 275]
17 - Chapter 12 Polyphenols for Brain and Cognitive Health [Seite 283]
17.1 - 12.1 Introduction [Seite 283]
17.2 - 12.2 Studies of total polyphenols and cognition [Seite 284]
17.2.1 - 12.2.1 Tea [Seite 286]
17.2.2 - 12.2.2 Cocoa [Seite 289]
17.2.3 - 12.2.3 Wine and grapes [Seite 291]
17.2.4 - 12.2.4 Soy [Seite 293]
17.3 - 12.3 Pine bark [Seite 296]
17.4 - 12.4 Discussion and conclusions [Seite 307]
17.5 - References [Seite 307]
18 - Chapter 13 Curcumin and Cancer Metastasis [Seite 313]
18.1 - 13.1 Introduction [Seite 314]
18.1.1 - 13.1.1 Antimetastatic mechanisms [Seite 315]
18.1.2 - 13.1.2 Curcumin, a polyphenol from Curcuma longa [Seite 316]
18.2 - 13.2 Effects of curcumin on intra-hepatic metastasis of liver cancer [Seite 317]
18.2.1 - 13.2.1 Effect of curcumin on the growth of the implanted HCC and intrahepatic metastasis [Seite 317]
18.2.2 - 13.2.2 Effect of curcumin on tumor invasion and expression of invasion-related molecules [Seite 317]
18.2.3 - 13.2.3 Effect of curcumin on tumor cell adhesion to fibronectin, laminin, and poly-l-lysine substrates [Seite 319]
18.2.4 - 13.2.4 Effect of curcumin on the expression of some integrin subunits [Seite 319]
18.2.5 - 13.2.5 Effect of curcumin on the haptotactic migration [Seite 319]
18.2.6 - 13.2.6 Effect of curcumin on the formation of actin stress fibers [Seite 321]
18.3 - 13.3 Effects of curcumin on lymp node metastasis of lung cancer [Seite 322]
18.3.1 - 13.3.1 Comparison of metastatic properties of Lewis lung carcinoma (LLC) and its metastatic variant cell line [Seite 322]
18.3.2 - 13.3.2 Effect of curcumin on the growth of the inoculated tumor and lymph node metastasis of orthotopically implanted LLC cells [Seite 323]
18.3.3 - 13.3.3 Combined effect of curcumin and CDDP (cis-diamine-dichloroplatinum) in the lung cancer model [Seite 323]
18.3.4 - 13.3.4 Effect of curcumin on the growth and invasion of LLC cells in vitro [Seite 324]
18.3.5 - 13.3.5 Anti-AP-1 transcriptional activity of curcumin in LLC cells [Seite 325]
18.3.6 - 13.3.6 Effect of curcumin on the expression of mRNAs for u-PA and u-PAR in LLC [Seite 325]
18.4 - 13.4 Effects of curcumin on tumor angiogenesis [Seite 327]
18.4.1 - 13.4.1 Curcumin inhibits the formation of capillary-like tubes in rat lymphatic endothelial cells (TR-LE) [Seite 327]
18.4.2 - 13.4.2 Inhibition of IKK is independent of the inhibitory effect of curcumin [Seite 328]
18.4.3 - 13.4.3 Involvement of Akt's inhibition in curcumin's activities [Seite 328]
18.4.4 - 13.4.4 Involvement of MMP-2 in lymphangiogenesis [Seite 330]
18.5 - 13.5 Conclusions [Seite 331]
18.6 - References [Seite 331]
19 - Chapter 14 Phytochemical and Pharmacological Overview of Cistanche Species [Seite 337]
19.1 - 14.1 Introduction [Seite 337]
19.2 - 14.2 Chemical constituents of Cistanche species [Seite 338]
19.2.1 - 14.2.1 Phenylethanoid glycosides (PhGs) [Seite 339]
19.2.2 - 14.2.2 Benzyl glycosides [Seite 339]
19.2.3 - 14.2.3 Iridoids [Seite 339]
19.2.4 - 14.2.4 Monoterpenoids [Seite 339]
19.2.5 - 14.2.5 Lignans [Seite 345]
19.2.6 - 14.2.6 Polysaccharides [Seite 346]
19.2.7 - 14.2.7 Other types of compounds [Seite 346]
19.3 - 14.3 Bioactivities of the extracts and pure compounds from Cistanche species [Seite 346]
19.3.1 - 14.3.1 Antioxidation [Seite 347]
19.3.2 - 14.3.2 Neuroprotection [Seite 348]
19.3.2.1 - 14.3.2.1 Anti-Parkinson's disease (PD) [Seite 348]
19.3.2.2 - 14.3.2.2 Cognitive improvement [Seite 352]
19.3.2.3 - 14.3.2.3 Sedation [Seite 355]
19.3.3 - 14.3.3 Vasorelaxation [Seite 355]
19.3.4 - 14.3.4 Antifatigue and longevity promotion [Seite 355]
19.3.5 - 14.3.5 Anti-inflammation and immunoregulation [Seite 356]
19.3.6 - 14.3.6 Antitumor [Seite 357]
19.3.7 - 14.3.7 Defecation promotion [Seite 357]
19.3.8 - 14.3.8 Hepatoprotection [Seite 357]
19.3.9 - 14.3.9 Antimyocardial ischemia [Seite 357]
19.3.10 - 14.3.10 Radiation resistance [Seite 358]
19.3.11 - 14.3.11 Tissue repairing [Seite 358]
19.4 - 14.4 Conclusions [Seite 358]
19.5 - References [Seite 358]
20 - Index [Seite 366]
21 - Supplemental Images [Seite 375]
22 - EULA [Seite 399]

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

162,99 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok