Carbon-Based Nanofillers and Their Rubber Nanocomposites

Carbon Nano-Objects
 
 
Elsevier (Verlag)
  • 1. Auflage
  • |
  • erschienen am 13. November 2018
  • |
  • 402 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-813249-4 (ISBN)
 

Carbon-Based Nanofillers and Their Rubber Nanocomposites: Carbon Nano-Objects presents their synthetic routes, characterization and structural properties, and the effect of nano fillers on rubber nanocomposites. The synthesis and characterization of all carbon-based fillers is discussed, along with their morphological, thermal, mechanical, dynamic mechanical and rheological properties. In addition, the book covers the theory, modeling and simulation aspects of these nanocomposites, along with various applications. Users will find this a unique contribution to the field of rubber science and technology that is ideal for graduates, post graduates, engineers, research scholars, polymer engineers, polymer technologists, and those in biomedical fields.

  • Reviews rubber nanocomposites, including carbon associated nanomaterials (nanocarbon black, graphite, graphene, carbon nanotubes, fullerenes and diamond)
  • Presents the synthesis and characterization of carbon based nanocomposites
  • Relates the structure of these nanocomposites to their function as rubber additives and their many applications
  • Discusses suitable analytical techniques for the characterization of carbon-based nanocomposites
  • Englisch
  • San Diego
  • |
  • USA
  • 13,13 MB
978-0-12-813249-4 (9780128132494)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Carbon-Based Nanofillers and Their Rubber Nanocomposites
  • Copyright Page
  • Contents
  • List of Contributors
  • 1. Synthesis, Characterization, and Applications of Carbon Nanotubes
  • Future Perspectives
  • 1.1 Introduction
  • 1.2 Brief History of Carbon Nanotubes
  • 1.2.1 Synthesis
  • 1.2.1.1 Arc Discharge
  • 1.2.1.2 Laser Ablation
  • 1.2.1.3 Chemical Vapor Deposition
  • 1.2.2 Properties
  • 1.2.3 Characterization
  • 1.2.3.1 Raman Spectroscopy
  • 1.2.3.2 Fourier Transform Infrared Spectroscopy
  • 1.2.3.3 X-Ray Photoelectron Spectroscopy
  • 1.2.3.4 X-Ray Diffraction (XRD)
  • 1.2.3.5 Thermogravimetric Analysis
  • 1.2.3.6 Scanning Electron Microscopy
  • 1.2.3.7 Transmission Electron Microscopy
  • 1.2.3.8 Dispersion Analysis of CNT
  • 1.3 Potential Applications of Carbon Nanotubes
  • 1.3.1 Reinforcement in Polymer Nanocomposites
  • 1.3.1.1 Synthesis of CNT-Based Nanocomposites
  • 1.3.1.1.1 Melt Mixing
  • 1.3.1.1.2 Solvent Casting
  • 1.3.1.1.3 In Situ Polymerization
  • 1.3.1.2 Carbon Nanotube-Reinforced Systems
  • 1.3.1.2.1 Simulations and Modeling
  • 1.3.1.2.2 Experimental Approach
  • 1.3.2 Electronic Devices
  • 1.3.3 Biological Applications
  • 1.3.3.1 CNTs in Neuroscience
  • 1.3.3.1.1 MWCNT and SWCNT Substrates for Neuronal Cell Growth
  • 1.3.4 Important Barriers That Limit the Application of Carbon Nanotubes
  • 1.4 Conclusions
  • Acknowledgments
  • References
  • 2. An Overview of the Synthesis, Characterization, and Applications of Carbon Nanotubes
  • 2.1 Introduction
  • 2.2 Synthesis of Carbon Nanotubes
  • 2.2.1 Arc Discharge Process
  • 2.2.2 Laser Ablation Process
  • 2.2.3 CVD Process
  • 2.2.4 Floating Catalyst CVD Process
  • 2.2.5 Fluidized Bed CVD Process
  • 2.3 Characterization of Carbon Nanotubes
  • 2.3.1 Scanning Electron Microscopy
  • 2.3.2 Transmission Electron Microscopy
  • 2.3.3 High-Resolution Transmission Electron Microscopy
  • 2.3.4 Raman Spectroscopy
  • 2.4 Applications of Carbon Nanotubes
  • 2.5 Conclusions
  • Acknowledgments
  • References
  • 3. Wet Functionalization of Carbon Nanotubes and Its Applications in Rubber Composites
  • 3.1 Introduction to Carbon Nanotubes
  • 3.2 Wet Functionalization of CNTs
  • 3.2.1 Physical Functionalization
  • 3.2.2 Chemical Functionalization
  • 3.3 Application of Wet-Functionalized Carbon Nanotubes in Rubber Composites
  • 3.3.1 Mechanical Properties
  • 3.3.2 Thermal Properties
  • 3.3.3 Electrical Properties
  • 3.4 Conclusions and Perspectives
  • References
  • 4. Synthesized Carbon Nanotubes and Their Applications
  • 4.1 Introduction
  • 4.2 Chemically Modified Carbon Nanotubes
  • 4.3 Ball Milling
  • 4.4 Modification Using Microwave Technology
  • 4.5 Electrochemically Assisted Covalent Modification
  • 4.6 Electroless Deposition
  • 4.7 Rubber Nanocomposites
  • 4.8 Applications of Carbon Nanotubes in Recent Trends
  • 4.9 Conclusion
  • References
  • Further Reading
  • 5. Nanocrystalline Diamond: A High-Impact Carbon Nanomaterial for Multifunctional Applications Including as Nanofiller in...
  • 5.1 General Features and Classification
  • 5.1.1 Crystal Structure
  • 5.1.2 Carbon Bonding
  • 5.1.3 Graphite
  • 5.1.4 Diamond-Like Carbon (DLC)
  • 5.1.5 Diamond
  • 5.1.6 Other Forms of Carbon
  • 5.2 Synthesis of Diamond
  • 5.2.1 High-Pressure High-Temperature Techniques
  • 5.2.1.1 Kinetics and Growth
  • 5.2.1.2 Transformation From Diamond to Graphite
  • 5.2.2 Low-Pressure CVD Growth of Diamond Films
  • 5.2.2.1 Introduction to CVD Diamond
  • 5.2.2.2 Diamond Nucleation
  • 5.2.2.3 Diamond Growth
  • 5.2.2.3.1 Electromagnetic Excitation
  • 5.2.2.3.2 Variations in Parameters, Precursors, and Pursuance of Growth
  • 5.2.2.3.3 CVD Diamond Using Halogenated Precursors
  • 5.2.2.3.4 Doped CVD Diamond
  • 5.2.2.3.4.1 CVD Doped Diamond Thin Film
  • 5.2.2.3.4.2 Surface Transfer Doping
  • 5.2.2.3.4.3 Doping by Vacuum Annealing
  • 5.2.2.3.4.4 Doped Diamond in Electrochemistry
  • 5.2.3 Ultrananocrystalline Diamond (UNCD) Film
  • Classification With Nanocrystalline Diamond (NCD) and Microcrystalline Diam...
  • 5.2.3.1 Synthesis of Ultrananocrystalline Diamond (UNCD) Films
  • 5.2.3.1.1 Diluent Gas-Controlled Nucleation and Growth of UNCD Thin Films
  • 5.2.3.1.1.1 Using H2 as a Diluent to the Precursor Gas
  • 5.2.3.1.1.2 Using Ar as a Diluent to the Precursor Gas
  • 5.2.3.1.2 Bias-Enhanced Nucleation and Growth of UNCD Thin Films
  • 5.2.3.1.3 Doped (Boron) UNCD From H-Rich/Ar-Lean Gas System
  • 5.3 Characteristics and Applications of Nanocrystalline Diamond
  • 5.3.1 Bulk and Surface Properties of UNCD
  • 5.3.2 Thermal Properties of UNCD
  • 5.3.3 Dielectric Properties of UNCD
  • 5.3.4 Electrical Properties of UNCD
  • 5.3.5 Electron Emission Properties of UNCD
  • 5.3.6 Diamond Nanostructures in Energy Storage Devices
  • 5.3.7 Properties of UNCD Films as Bio-Inert Coating for Biomedical Applications
  • 5.3.7.1 UNCD for Developmental Biology
  • 5.3.7.2 Growth of Neurons on Diamond
  • 5.3.7.3 Nanodiamond as a Drug Delivery System
  • 5.3.7.4 Nanodiamond in the Polymeric System
  • 5.3.7.5 Future Prospects
  • 5.4 Summary and Conclusion
  • References
  • 6. Synthesis, Characterization, and Applications of Diamond Films
  • 6.1 Introduction
  • 6.2 Crystalline Forms of Carbon
  • 6.2.1 Crystal Structure of Diamond
  • 6.2.2 Crystal Structure of Graphite
  • 6.3 Synthesis of Diamond
  • 6.3.1 Natural Diamonds
  • 6.3.2 High-Pressure High-Temperature Method
  • 6.3.3 Detonation Nanodiamond
  • 6.3.4 Chemical Vapor Deposition
  • 6.4 The Substrate Materials
  • 6.4.1 Substrates With Little Carbon Solubility
  • 6.4.2 Substrates With Large Carbon Solubility
  • 6.4.3 Substrates Form Carbides
  • 6.5 Diamond Deposition
  • 6.5.1 Seeding
  • 6.5.2 Hot Filament CVD
  • 6.5.3 Growth Mechanism
  • 6.5.4 Role of Hydrogen
  • 6.6 SCD, MCD, and NCD
  • 6.7 Physical Properties of Diamond
  • 6.7.1 Mechanical Properties
  • 6.7.2 Electrical Properties
  • 6.7.3 Thermal Properties
  • 6.7.4 Acoustic Properties
  • 6.7.5 Optical Properties
  • 6.8 Characterization of Diamond
  • 6.8.1 X-Ray Diffraction
  • 6.8.2 Raman Spectroscopy
  • 6.8.3 Atomic Force Microscopy
  • 6.8.4 Nanoindentation
  • 6.8.5 Pin-on-Disc Test
  • 6.9 Applications of Diamond
  • 6.9.1 Mechanical Applications
  • 6.9.2 Electronic Applications
  • 6.9.3 Thermal Applications
  • 6.9.4 Acoustic Applications
  • 6.9.5 Optical Applications
  • 6.9.6 Future Prospects
  • 6.10 Summary
  • References
  • 7. Synthesis and Electrochemical Performance of Transition Metal-Coated Carbon Nanofibers on Ni Foam as Anode Materials ...
  • 7.1 Introduction
  • 7.2 Synthesis and Electrochemical Performance of Ruthenium Oxide-Coated CNFs on Ni Foam
  • 7.2.1 Synthesis of Carbon Nanofibers
  • 7.2.2 Preparation of Ruthenium Oxide-Coated Carbon Nanofibers
  • 7.2.3 Fabrication Process of Anode Materials for Lithium Secondary Batteries
  • 7.3 Analyses
  • 7.3.1 Scanning Electron Microscopy
  • 7.3.2 Raman Spectroscopy
  • 7.3.3 X-Ray Photoelectron Spectroscopy
  • 7.3.4 Cyclic Voltammetry
  • 7.3.5 Cycle Performances
  • 7.4 Synthesis and Electrochemical Performance of Transition Metals Oxide-Coated Carbon Nanofibers on Ni Foam
  • 7.4.1 Transition Metal-Coated Carbon Nanofibers
  • 7.4.2 Fabrication Process of Anode Materials for Lithium Secondary Batteries
  • 7.5 Analyses
  • 7.5.1 Scanning Electron Microscopy
  • 7.5.2 Raman Spectroscopy
  • 7.5.3 X-Ray Photoelectron Spectroscopy
  • 7.5.4 Cyclic Voltammetry
  • 7.5.5 Cycle Performances
  • 7.6 Conclusion
  • References
  • 8. Synthesis, Characterization, and Applications Carbon Nanofibers
  • 8.1 Introduction
  • 8.2 Synthesis of Carbon Nanofibers
  • 8.2.1 Catalytic Chemical Vapor Deposition
  • 8.2.2 Electrospinning
  • 8.2.3 Templating
  • 8.2.4 Drawing
  • 8.2.5 Phase Separation
  • 8.3 Comparison of VGCNFs and ECNFs
  • 8.4 Properties of Carbon Nanofibers
  • 8.5 Applications of Carbon Nanofibers
  • 8.6 Conclusions and Future Perspectives
  • References
  • 9. Synthesis, Characterization, and Applications of Graphene and Derivatives
  • 9.1 Introduction
  • 9.2 Structure of Graphene
  • 9.3 Electronic Properties of Graphene
  • 9.4 Graphene and Derivatives Synthesis Techniques
  • 9.4.1 Chemical Exfoliation by Modified Hummers Method
  • 9.4.2 Electrochemical Exfoliation Method
  • 9.4.3 Chemical Vapor Deposition
  • 9.4.4 Microwave Irradiation Method
  • 9.5 Characterizations of Graphene
  • 9.5.1 Raman Spectroscopy
  • 9.5.2 Ultraviolet Visible Spectroscopy (UV-Vis)
  • 9.5.3 Transmission Electron Microscopy (TEM)
  • 9.5.4 Scanning Electron Microscopy
  • 9.5.5 X-Ray Diffraction (XRD)
  • 9.6 Applications of Graphene and Its Derivatives
  • 9.6.1 Sensors
  • 9.6.2 Transistors
  • 9.6.3 Energy Storage
  • 9.6.4 Water Filtration
  • 9.6.5 Solar Cells
  • 9.6.6 Graphene-Based Elastomeric
  • 9.7 Future Prospects and Conclusion
  • Acknowledgments
  • References
  • 10. Wet Functionalization of Graphene and Its Applications in Rubber Composites
  • 10.1 Introduction of Graphene
  • 10.2 Wet Functionalization of Graphene
  • 10.2.1 Physical Functionalization
  • 10.2.2 Chemical Functionalization
  • 10.3 Application of Wet-Functionalized Graphene in Rubber Composites
  • 10.3.1 Mechanical Properties
  • 10.3.2 Thermal Properties
  • 10.3.3 Electrical Properties
  • 10.4 Conclusions and Perspectives
  • References
  • 11. Computational Homogenization of Anisotropic Carbon/Rubber Composites With Stochastic Interface Defects
  • 11.1 Introduction
  • 11.2 Mathematical Model
  • 11.3 Finite Element Method Analysis
  • 11.4 Probabilistic Analysis With the ISFEM
  • 11.5 Future Prospects
  • 11.6 Conclusions
  • Acknowledgements
  • References
  • 12. Fabrication Methods of Carbon-Based Rubber Nanocomposites
  • Abbreviations
  • 12.1 Introduction
  • 12.2 Melt Mixing
  • 12.2.1 Direct Melt Mixing
  • 12.2.2 Multistage Melt Mixing
  • 12.3 Solution Mixing
  • 12.4 Fabrication of CBRNs Containing Surface-Modified CBNFs
  • 12.5 Future Prospects
  • 12.6 Conclusions
  • References
  • Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

208,25 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen