Buckling and Ultimate Strength of Ship and Ship-like Floating Structures

 
 
Butterworth-Heinemann (Verlag)
  • 1. Auflage
  • |
  • erschienen am 11. August 2016
  • |
  • 536 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-803912-0 (ISBN)
 

Buckling and Ultimate Strength of Ship and Ship-like Floating Structures provides an integrated state-of-the-art evaluation of ship structure mechanics including buckling, plastic failure, ultimate strength, and ultimate bending moments. For the design of any industrial product, it is necessary to understand the fundamentals in the failure behavior of structures under extreme loads. Significant developments have been made in understanding the analysis method of plastic collapse and behavior and strength of structures accompanied by buckling.

Written by two of the foremost experts in international ship design and ocean engineering, this book introduces fundamental theories and methods as well as new content on the behavior of buckling/plastic collapse that help explain analysis like the initial imperfections produced by welding and the ultimate strength of plates, double bottom structures of bulk carriers, and ship and FPSO hull girders in longitudinal bending.

Rounding out with additional coverage on floating structures such as oil and gas platforms and LNG/FLNG structural characteristics, Buckling and Ultimate Strength of Ship and Ship-like Floating Structures is a must-have resource for naval architects and other marine engineering professionals seeking to gain an in-depth understanding of the technological developments in this area.


  • Explains how the initial imperfections produced by welding, residual stress, and initial deflection in panels influence the collapse behavior and the compressive ultimate strength of rectangular plates
  • Evaluates the ultimate strength of plate girders under bending and shearing as well as combined bend/shear loads
  • Provides fundamental theories, simple formulas, and analytical methods such as Finite Element Method or Smith's Method to simulate and evaluate buckling/plastic collapse behavior and strength of plates under various conditions
  • Authored by two of the foremost experts in international ship design and ocean engineering
  • Includes additional coverage on floating structures such as oil and gas platforms


Tetsuya Yao is Professor Emeritus of Osaka University, Professor Emeritus of Hiroshima University and Technical Advisor at Tsuneishi Shipbuilding Co., Ltd. He received his BSc, MSc, and PhD in Engineering at Osaka University with a focus on Naval Architecture. His main fields of research include Structural Mechanics, Structural Analysis, Optimal Design, and Fracture Mechanics particularly in relation to buckling/plastic collapse behavior and strength of steel plated structures.
  • Englisch
  • Oxford
  • |
  • USA
Elsevier Science
  • 68,28 MB
978-0-12-803912-0 (9780128039120)
0128039124 (0128039124)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Buckling and Ultimate Strength of Ship and Ship-like Floating Structures
  • Copyright
  • Contents
  • Preface
  • Acknowledgments
  • Chapter 1: Introduction
  • 1.1 Buckling/Plastic Collapse of Ship and Ship-Like Floating Structures
  • 1.2 Short Historical Review on Research Works
  • 1.3 Contents of the Text
  • Exercises
  • References
  • Chapter 2: Initial Imperfections due to Welding
  • 2.1 Initial Imperfections due to Welding
  • 2.2 Welding Residual Stress
  • 2.2.1 Welding Residual Stress in Panels
  • 2.2.2 Welding Residual Stress in Stiffened Panels
  • 2.3 Initial Distortion/Deflection
  • 2.3.1 Mechanism Producing Initial Distortion/Deflection and Its Measurement
  • 2.3.2 Shape of Initial Deflection in Panels
  • 2.3.3 Magnitude of Initial Deflection in Panels
  • 2.3.4 Initial Deflection in Longitudinal Stiffeners
  • 2.4 Setting of Initial Imperfections due to Welding in Buckling/Plastic Collapse Analysis
  • Exercises
  • References
  • Chapter 3: Fundamental Theory and Methods of Analysis to Simulate Buckling/Plastic Collapse Behavior
  • 3.1 Deflection Mode of Plates and Stiffened Plates in Buckling/Plastic Collapse Behavior
  • 3.1.1 Buckling Collapse Behavior of Plates
  • 3.1.2 Buckling Collapse Behavior of Stiffened Plates
  • 3.1.3 Buckling Collapse Behavior of Stiffeners
  • 3.2 Buckling Strength Analysis
  • 3.2.1 General Theory for a Rectangular Plate
  • 3.2.2 Elastic Buckling Strength of a Rectangular Plate Under Uni-Axial Thrust
  • 3.3 Elastic Large Deflection Analysis of Rectangular Plate Subjected to Combined Loads
  • 3.3.1 Assumed Deflection Mode
  • 3.3.2 In-Plane Stress and Strain
  • 3.3.3 Bending Stress and Strain
  • 3.3.4 Overall Shrinkage and Shear Deformation Considering Large Deflection Effects
  • 3.3.5 Elastic Large Deflection Behavior
  • 3.3.6 Elastic Large Deflection Analysis of Rectangular Plate Subjected to Uni-Axial Thrust
  • 3.4 Elastoplastic Large Deflection Analysis
  • 3.4.1 Fundamentals
  • 3.4.2 Displacement Field in the Element
  • 3.4.3 Strain-Displacement Relationships
  • 3.4.4 Stress-Strain Relationships
  • 3.4.5 Introduction of Virtual Stiffness
  • 3.4.6 Derivation of the Stiffness Matrix
  • Exercises
  • 3.5 Appendix: Fundamental Equations for Elastic Large Deflection Analysis Assuming General Deflection Mode
  • 3.5.1 Airy's Stress Function
  • 3.5.2 In-Plane Stress and Strain Components
  • 3.5.3 Bending Strain and Stress Components
  • 3.5.4 Coefficients in Fundamental Equations
  • 3.6 Appendix: Derivation of EQ. 3.83 for Strain-Displacement Relationship
  • 3.7 Appendix: Derivation of Initial Stress Stiffness Matrix
  • References
  • Chapter 4: Buckling/Plastic Collapse Behavior and Strength of Rectangular Plate Subjected to Uni-Axial Thrust
  • 4.1 Possible Buckling Modes/Behavior
  • 4.1.1 Buckling
  • 4.1.2 Elastic Postbuckling Behavior of Short Plate
  • 4.1.3 Elastic Postbuckling Behavior of Long Plate
  • 4.2 Buckling Strength
  • 4.2.1 Influence of Boundary Condition on Buckling Strength
  • 4.2.2 Influence of Welding Residual Stress on Buckling Strength
  • 4.3 Local Buckling Strength of Stiffened Plate Considering Web-Plate Interactions
  • 4.3.1 Interaction Between Plate and Stiffener
  • 4.3.2 Derivation of Interactive Buckling Strength
  • 4.3.3 Influence of Plate-Stiffener Web Interaction on Local Buckling Strength
  • 4.4 Secondary Buckling in Rectangular Plate Subjected to Uni-Axial Thrust
  • 4.4.1 Elastic Secondary Buckling of Simply Supported Rectangular Plate
  • 4.4.2 Static Equilibrium Path in Secondary Buckling of Short Plate Under Uni-Axial Thrust
  • 4.4.3 Static Equilibrium Path in Secondary Buckling of Long Plate Under Uni-Axial Thrust
  • 4.4.4 Secondary Buckling Strength of Rectangular Plate Under Uni-Axial Thrust
  • 4.4.5 Influence of Out-of-Plane Boundary Conditions on Secondary Buckling Behavior
  • 4.4.6 Dynamic Phenomena in Secondary Buckling Behavior
  • 4.4.6.1 Loading path
  • 4.4.6.2 Unloading path
  • 4.5 Postbuckling Behavior and Ultimate Strength
  • 4.5.1 Secondary Buckling and Buckling/Plastic Collapse Behavior
  • 4.5.2 Buckling/Plastic Collapse Behavior: Short Plates
  • 4.5.2.1 Fundamentals in buckling/plastic collapse behavior
  • 4.5.2.2 Influence of yielding on development of deflection components
  • 4.5.2.3 Relationship between initial yielding strength and ultimate strength
  • 4.5.2.4 Influence of in-plane boundary conditions on buckling/plastic collapse behavior
  • 4.5.2.5 Influence of initial deflection on buckling/plastic collapse behavior
  • 4.5.2.6 Influence of welding residual stress on buckling/plastic collapse behavior
  • 4.5.2.7 Dependence of ultimate strength on aspect ratio of short rectangular plates
  • 4.5.3 Buckling/Plastic Collapse Behavior: Long Plates
  • 4.5.4 Buckling/Plastic Collapse Behavior: Wide Plates
  • 4.5.4.1 Wide rectangular plates in ship structures
  • 4.5.4.2 Fundamental behavior during buckling/plastic collapse
  • 4.6 Postultimate Strength Behavior of Rectangular Plate Under Uni-Axial Thrust
  • 4.6.1 Plates for Analysis
  • 4.6.2 Collapse Behavior Beyond Ultimate Strength
  • 4.6.3 Deflection Modes Beyond Ultimate Strength
  • 4.6.4 Concentration of Plastic Deformation Beyond Ultimate Strength
  • 4.7 Buckling/Plastic Collapse Behavior of Rectangular Plates Under Uni-Axial Cyclic Loading
  • 4.7.1 Buckling/Plastic Collapse Behavior of Short Plates Under Single Cyclic Loading
  • 4.7.1.1 Residual deflection after compressive collapse
  • 4.7.2 Buckling/Plastic Collapse Behavior of Short Plates Under Multicyclic Loading
  • Exercises
  • 4.8 Appendix: Application of Method of Least Squares to Derive Deflection Components From FEM Results
  • 4.9 Appendix: Applicability of FEM Code to Buckling/Plastic Collapse Analysis of Plates Subjected to Cyclic Loading
  • References
  • Chapter 5: Buckling/Plastic Collapse Behavior and Strength of Rectangular Plates Subjected to Combined Loads
  • 5.1 Collapse Behavior and Strength of Continuous Plates Under Combined Longitudinal/Transverse Thrust and Lateral Pressure ...
  • 5.1.1 Model for Analysis
  • 5.1.2 Influence of Loading Sequence on Buckling/Plastic Collapse Behavior
  • 5.1.3 Influence of Lateral Pressure on Elastic Buckling Strength of Continuous Plate Under Combined Longitudinal/Transvers ...
  • 5.1.4 Buckling/Plastic Collapse Behavior Under Combined Transverse Thrust and Lateral Pressure
  • 5.1.4.1 Buckling/plastic collapse behavior
  • 5.1.4.2 Influence of lateral pressure on ultimate compressive strength
  • 5.1.4.3 Estimation of ultimate strength of continuous plating subjected to combined transverse thrust and lateral pressure
  • Simply supported plate under transverse thrust
  • Continuous plate which collapses in simply supported mode under combined transverse thrust and lateral pressure
  • Clamped plate under transverse thrust
  • Continuous plate which collapses in clamped mode under combined transverse thrust and lateral pressure
  • Procedure and results of estimation
  • 5.1.5 Buckling/Plastic Collapse Behavior Under Combined Longitudinal Thrust and Lateral Pressure
  • 5.1.5.1 Model of continuous plating for analysis
  • 5.1.5.2 Collapse behavior and ultimate strength
  • 5.1.5.3 Estimation of ultimate compressive strength
  • Ultimate strength under simply supported condition
  • Ultimate strength under clamped condition
  • Ultimate strength under combined longitudinal thrust and lateral pressure
  • 5.1.6 Collapse Behavior Under Combined Bi-Axial Thrust and Lateral Pressure
  • 5.2 Plates Under Combined Uni-Axial Thrust and Bending
  • 5.2.1 Loading Conditions
  • 5.2.2 Wide Rectangular Plates for Analysis
  • 5.2.3 Method to Apply Combined Thrust and Bending Loads
  • 5.2.4 Collapse Behavior Under Pure Bending
  • 5.2.5 Collapse Behavior Under Pure Thrust
  • 5.2.6 Collapse Behavior Under Combined Thrust and Bending Loads
  • 5.2.7 Approximate Formulas to Evaluate Buckling/Ultimate Strength of Rectangular Plates Subjected to Combined Thrust and B ...
  • 5.3 Plates Under Combined Uni-Axial Thrust and Shear Loads
  • 5.3.1 Model for Analysis
  • 5.3.2 Ultimate Strength Under Pure Shear
  • 5.3.3 Ultimate Strength Under Combined Thrust and Shear
  • Exercises
  • 5.4 Appendix: Ultimate Strength of Strip Subjected to Axial Thrust
  • References
  • Chapter 6: Buckling/Plastic Collapse Behavior and Strength of Stiffened Plates
  • 6.1 Buckling Collapse Behavior and Strength of Stiffened Plates
  • 6.2 Buckling/Plastic Collapse Behavior and Strength of Continuous Stiffened Plates
  • 6.2.1 Modeling of Continuous Stiffened Plate for FEM Analysis
  • 6.2.1.1 Modeling extent in longitudinal direction
  • 6.2.1.2 Modeling extent in transverse direction
  • 6.2.2 Collapse Behavior of Stiffened Plates Under Longitudinal Thrust
  • 6.2.2.1 Models for FEM collapse analysis
  • 6.2.2.2 Modeling for FEM collapse analysis
  • 6.2.2.3 Nonlinear FEM analysis
  • 6.2.2.4 Initial deflection in FEM model
  • 6.2.2.5 Ultimate strength and collapse behavior of stiffened plates under longitudinal thrust [5]
  • 6.2.3 Collapse Behavior and Strength of Continuous Stiffened Plates Under Combined Longitudinal Thrust and Lateral Pressur ...
  • 6.2.3.1 Modeling of continuous stiffened plates
  • 6.2.3.2 Buckling/plastic collapse behavior under combined longitudinal thrust and lateral pressure
  • 6.2.3.3 Influence of lateral pressure on collapse behavior and ultimate strength
  • 6.2.4 Collapse Behavior and Strength of Continuous Stiffened Plates Under Transverse Thrust
  • 6.2.4.1 Model for analysis
  • 6.2.4.2 Buckling/plastic collapse behavior under transverse thrust
  • 6.2.5 Buckling/Plastic Collapse Behavior Under Combined Transverse Thrust and Lateral Pressure
  • 6.2.6 Collapse Behavior of Continuous Stiffened Plates Under Bi-Axial Thrust
  • 6.2.7 Collapse Behavior of Continuous Stiffened Plates Under Combined Bi-Axial Thrust and Lateral Pressure Loads
  • 6.3 Simplified Method to Evaluate Compressive Ultimate Strength of Continuous Stiffened Plates Subjected to Combined Bi-Ax ...
  • 6.3.1 Modeling for Ultimate Strength Evaluation
  • 6.3.2 Continuous Stiffened Plates Subjected to Longitudinal Thrust
  • 6.3.2.1 Modeling and assumptions
  • 6.3.2.2 Fundamental equations as beam-column model
  • 6.3.2.3 Effective width of local plate and effective thickness of stiffener after buckling
  • 6.3.2.4 Condition to determine ultimate strength
  • 6.3.2.5 Validation of the proposed evaluation method
  • 6.3.3 Continuous Stiffened Plate Subjected to Combined Longitudinal Thrust and Lateral Pressure
  • 6.3.3.1 Method to evaluate compressive ultimate strength
  • 6.3.3.2 Validation of proposed evaluation method
  • 6.3.4 Continuous Stiffened Plates Subjected to Transverse Thrust [10]
  • 6.3.5 Continuous Stiffened Plates Subjected to Combined Transverse Thrust and Lateral Pressure
  • 6.3.6 Continuous Stiffened Plates Subjected to Bi-Axial Thrust [14]
  • 6.3.7 Continuous Stiffened Plates Subjected to Combined Bi-Axial Thrust and Lateral Pressure
  • 6.3.8 Closed Form Formulas to Evaluate Ultimate Strength of Stiffened Plates Subjected to Combined In-Plane Loads and Later...
  • Exercises
  • 6.4 Appendix: Buckling Strength of Column With Attached Plating Under Axial Compression
  • 6.5 Appendix: Parameters in Closed Form Formulas to Evaluate Ultimate Strength of Stiffened Plate Subjected to Combined Bi- ...
  • 6.5.1 Condition to Evaluate the Ultimate Strength
  • 6.5.1.1 Bi-axial compression
  • 6.5.1.2 Combined compression in x-direction and tension in y-direction
  • 6.5.1.3 Combined tension in x-direction and compression in y-direction
  • 6.5.1.4 Bi-axial tension
  • 6.5.2 Buckling Strength of Local Plate
  • 6.5.3 Effective Width of the Local Plate Beyond the Occurrence of Local Buckling
  • 6.5.4 Effective Thickness of Flat-Bar Stiffener Beyond the Occurrence of Local Plate Buckling
  • 6.5.5 Variables Necessary to Evaluate Warping Stress
  • 6.5.6 suxq
  • 6.5.6.1 When thrust load is dominant (0 = q = qcr or -qcr = q = 0)
  • 6.5.6.2 When pressure load is dominant (q = qcr or -qcr = q)
  • 6.5.7 suyq
  • References
  • Chapter 7: Buckling/Plastic Collapse Behavior and Strength of Plate Girders Subjected to Combined Bending and Shear Loads
  • 7.1 Research on Buckling of Plate Girders in Ship and Ship-Like Floating Structures
  • 7.2 Buckling/Plastic Collapse Behavior and Strength of Unstiffened Plate Girders
  • 7.2.1 Basler's Findings
  • 7.2.1.1 Plate girders subjected to pure bending
  • 7.2.1.2 Plate girders subjected to shear load
  • 7.2.1.3 Plate girders subjected to combined bending and shear loads
  • 7.2.2 Fujii's Formulations to Evaluate Ultimate Strength of Plate Girders
  • 7.2.2.1 Plate girders subjected to shear load
  • Stress components
  • Equilibrium conditions
  • Ultimate shear strength
  • Case with strong flange
  • Case with weak flange: wide spacing between vertical stiffeners
  • Case with weak flange: narrow spacing between vertical stiffeners
  • Summary of formulas for ultimate shear strength
  • 7.2.2.2 Plate girders subjected to pure bending
  • 7.2.2.3 Plate girders subjected to combined bending and shear loads
  • Buckling strength interaction relationship
  • Fully plastic strength interaction relationship
  • Ultimate strength interaction relationship
  • 7.2.3 Numerical Experiments on Collapse Behavior of Plate Girders
  • 7.2.3.1 Test specimens for numerical simulation of collapse behavior
  • 7.2.3.2 Collapse behavior of G6-T1 specimen under shear
  • 7.2.3.3 Collapse behavior of G2-T1 and G1-T1 specimens under pure bending
  • 7.2.3.4 Collapse behavior of BS-3.2-0.0 specimen under combined bending and shear
  • 7.2.4 Collapse Behavior of Plate Girders in Double Bottom Structure
  • 7.2.4.1 Collapse under shear
  • 7.2.4.2 Collapse under pure bending
  • 7.2.4.3 Collapse under combined shear and bending
  • 7.3 Buckling/Plastic Collapse Behavior and Strength of Stiffened Girders in Shear
  • 7.3.1 FEM Models for Analysis
  • 7.3.2 Girders With Vertically Stiffened Web Panel
  • 7.3.3 Girders With Horizontally Stiffened Web Panel
  • 7.3.4 Girders With Vertically Stiffened and Perforated Web Panel
  • 7.3.5 Girders With Horizontally Stiffened and Perforated Web Panel
  • Exercises
  • References
  • Chapter 8: Progressive Collapse Behavior and Ultimate Strength of Hull Girder of Ship and Ship-Like Floating Structures in ...
  • 8.1 Ultimate Longitudinal Strength
  • 8.2 Research Works on Progressive Collapse Behavior and Strength of Hull Girder in Longitudinal Bending [3,4]
  • 8.2.1 Early Research Works on Hull Girder Strength
  • 8.2.2 Strength Tests on Actual Ships
  • 8.2.3 Progressive Collapse Behavior of Hull Girder Under Longitudinal Bending
  • 8.2.4 Calculation of Ultimate Hull Girder Strength
  • 8.2.4.1 Caldwell's method
  • 8.2.4.2 Smith's method
  • 8.2.4.3 Nonlinear finite element method
  • 8.2.4.4 Idealized structural unit method
  • 8.2.4.5 Simple methods
  • 8.2.4.6 Assessment of available calculation methods
  • 8.3 Smith's Method
  • 8.3.1 Assumptions
  • 8.3.2 Stiffness Equation
  • 8.3.3 Application of Smith's Method
  • 8.3.3.1 Smith's works
  • 8.3.3.2 Application to double hull tanker
  • Double hull tanker for analysis and assumed initial imperfections
  • Average stress-average strain relationships of structural members
  • Collapse behavior of cross-section under pure bending
  • Collapse behavior and strength under bi-axial bending
  • 8.3.3.3 Application to bulk carrier
  • Bulk carrier for analysis and assumed initial imperfections
  • Progressive collapse behavior
  • Influence of welding residual stress on progressive collapse behavior and strength
  • Influence of initial deflection in plating on progressive collapse behavior and strength
  • Influence of initial deflection in stiffener on progressive collapse behavior and strength
  • 8.3.3.4 Considerations on ultimate hull girder strength
  • 8.3.3.5 Limitation and extension in application of Smith's method
  • 8.4 Application of Nonlinear FEM
  • 8.4.1 Application of Explicit FEM
  • 8.4.1.1 Analysis on casualty of NAKHODKA [14,41]
  • Accident happened on NAKHODKA
  • Loads acting on NAKHODKA at the time of accident
  • Progressive collapse analysis on NAKHODKA
  • 8.4.1.2 Analysis of three tankers of different sizes [23,43]
  • 8.4.1.3 Analysis on 1/13-scale container ship model
  • 8.4.2 Application of Implicit FEM
  • 8.4.2.1 Boundary conditions and loading conditions
  • 8.4.2.2 Progressive collapse behavior and strength of hull girder in combined overall and local bending
  • 8.5 Application of the ISUM
  • 8.6 Collapse Tests on Hull Girder Models
  • 8.6.1 History of Collapse Tests on Hull Girder Models
  • 8.6.2 Tests on 1/3-Scale Frigate Model [54]
  • 8.6.3 Tests on a 1/10-Scale Wood-Chip Carrier Models [57]
  • 8.6.4 Tests on 1/13-Scale Container Ship Models [44]
  • 8.7 Total System for Progressive Collapse Analysis on Ship's Hull Girder
  • 8.7.1 Actual Collapse Behavior of Ship's Hull Girder in Extreme Sea
  • 8.7.2 Start of New Joint Research Project
  • 8.7.3 Load Analysis
  • 8.7.4 Progressive Collapse Analysis
  • 8.7.5 Example: Collapse Behavior of Kamsarmax Bulk Carrier in Alternate Heavy Loading Condition (Phase 1 Analysis)
  • 8.7.6 Fundamental Idea in Phase 2 Analysis [67,68]
  • 8.7.7 Example: Collapse Behavior of Kamsarmax Bulk Carrier in Homogeneous Loading Conditions (Phase 2 Analysis)
  • Exercises
  • 8.8 Appendix: Derivation of Average Stress-Average Strain Relationships of Elements for Smith's Method [29]
  • 8.8.1 Modeling of Stiffened Plating
  • 8.8.1.1 Average stress-deflection relationship of plating between stiffeners
  • 8.8.2 Average Stress-Average Strain Relationship of Plating Between Stiffeners
  • 8.8.3 Average Stress-Average Strain Relationship of Stiffener Element With Attached Plating
  • 8.9 Appendix: A Simple Method to Evaluate Warping of Hull Girder Cross-Section [39]
  • 8.9.1 Displacement Components
  • 8.9.2 Strain and Stress Components
  • 8.9.3 Application of Principle of Minimum Potential Energy
  • 8.9.3.1 Application to thin-walled beam cross-section
  • 8.9.3.2 Stiffness equation for warping
  • 8.9.3.3 Shear stress and warping stress
  • 8.10 Appendix: Fundamental Formulation in Explicit FEM [21]
  • Merits
  • Demerits
  • 8.11 Appendix: Relaxation of Welding Residual Stress by Preloading [3]
  • 8.12 Appendix: Buckling Strength of Stiffener Element With Attached Plating
  • References
  • Chapter 9: Theoretical Background and Assessment of Existing Design Formulas to Evaluate Ultimate Strength
  • 9.1 Rule Formulas
  • 9.2 Assessment of Rule Formulas in CSR-B
  • 9.2.1 Formulas for Plates
  • 9.2.2 Formulas for Stiffeners
  • 9.2.3 Assessment of CSR-B Formulas on Ultimate Strength
  • 9.3 Assessment of Rule Formulas in Panel Ultimate Limit State (PULS)
  • 9.3.1 Theoretical Background of PULS
  • 9.3.1.1 Local Bucking Model
  • 9.3.1.2 Overall Buckling Model
  • 9.3.1.3 Criterion for Ultimate Strength
  • 9.3.1.4 Procedure of Calculation Applying PULS
  • 9.3.2 Assessment of PULS Formulas on Ultimate Strength
  • 9.3.2.1 Stiffened plates subjected to uni-axial thrust
  • 9.3.2.2 Stiffened plates subjected to bi-axial thrust
  • 9.4 Average Stress-Average Strain Relationship for Application of Smith's Method
  • 9.4.1 Application of Smith's Method
  • 9.4.2 Average Stress-Average Strain Relationships Specified in CSR
  • 9.4.3 Assessment of Rule Formulas Specifying Average Stress-Average Strain Relationships
  • Exercises
  • 9.5 Appendix: Ultimate Strength of Stiffened Plate Subjected to Uni-Axial Thrust
  • References
  • Chapter 10: Buckling/Plastic Collapse Behavior of Structural Members and Systems in Ship and Ship-Like Floating Structures
  • 10.1 Introduction
  • 10.2 Triangular Corner Brackets
  • 10.2.1 General
  • 10.2.2 Buckling/Ultimate Strength of Triangular Corner Bracket
  • 10.2.3 Optimum Thickness of Corner Bracket
  • 10.3 Watertight Transverse Bulkhead of Bulk Carrier
  • 10.3.1 Casualty of Bulk Carriers
  • 10.3.2 Buckling/Plastic Collapse Behavior and Strength of Watertight Transverse Bulkhead of Bulk Carriers Against Flooded W...
  • 10.3.3 Simple Method to Evaluate the Ultimate Strength of Corrugated Bulkhead Against Flooding Pressure
  • 10.4 Double Bottom of Bulk Carrier
  • 10.4.1 Double Bottom Structure in Bulk Carrier
  • 10.4.2 Buckling/Plastic Collapse Behavior and Strength of Double Bottom Structure
  • 10.4.3 Summary of Findings Regarding Buckling/Plastic Collapse of Double Bottom Structures
  • 10.5 Hatch Cover of Bulk Carriers
  • 10.5.1 Regulation on Hatch Cover of Bulk Carriers
  • 10.5.2 Buckling/Plastic Collapse Behavior of Hatch Cover
  • 10.5.3 Simple Method to Evaluate Collapse Strength of Hatch Cover
  • Exercises
  • 10.6 Appendix: Optimum Thickness of Triangular Corner Bracket
  • 10.6.1 Fundamental Idea to Determine Optimum Thickness of Corner Bracket
  • 10.7 Simple Method to Evaluate Collapse Load of Corrugated Bulkhead subjected to Lateral Pressure
  • 10.7.1 Rigid Plastic Mechanism Analysis
  • 10.7.2 Influence of Local Buckling in Compression Flange
  • 10.7.3 Effectiveness of Web Plating at Clamped End
  • 10.7.4 Influences of Shedder Plate and Gusset Plate
  • 10.7.5 Influence of Shear Force on Fully Plastic Strength at Clamped End
  • References
  • Appendix A: Chronological Table of Study on Buckling/Ultimate Strength
  • Appendix B: Fundamentals in Idealized Structural Unit Method (ISUM)
  • B.1 Short History of ISUM Development
  • B.2 Formulation of New ISUM Element
  • B.2.1 Collapse Behavior of Rectangular Plate Under Thrust
  • B.2.2 Assumed Displacement Field in the ISUM Element
  • B.2.3 Generalized Strain and Stress Components
  • B.2.4 Relationship Between Strains and Nodal Displacements
  • B.2.5 Nonlinear Contribution of Shape Function to In-Plane Strain Components
  • B.2.6 Relationship Between Generalized Stress and Generalized Strain
  • B.2.7 Derivation of Stiffness Equation
  • B.2.8 Extent of the Element
  • B.3 Accuracy of the Proposed Shape Functions
  • Appendix C: Structural Characteristics of Representative Ship
  • C.1 Bulk Carriers
  • C.1.1 Structural Characteristics
  • C.1.2 Attention From a Structural Strength Viewpoint
  • C.1.2.1 Double bottom structure
  • C.1.2.2 Side frame
  • C.1.2.3 Stool
  • C.1.2.4 Others
  • C.2 Single Hull Tanker
  • C.2.1 Structural Characteristics
  • C.3 Attention From a Structural Strength Viewpoint
  • C.4 Double Hull Tanker
  • C.5 Container Ship
  • C.5.1 Structural Characteristics
  • C.5.2 Attention From a Structural Strength Viewpoint
  • C.6 Pure Car Carrier
  • C.6.1 Structural Characteristics
  • C.6.2 Attention From a Structural Strength Viewpoint
  • C.7 LNG Carrier (Moss-Type Sphere Tank System)
  • C.7.1 Structural Characteristics
  • C.7.2 Attention From a Structural Strength Viewpoint
  • C.9 LNG Carrier (Membrane Tank System)
  • C.9.1 Structural Characteristics
  • C.9.2 Attention From a Structural Strength Viewpoint
  • C.10 Ore Carrier
  • C.10.1 Structural Characteristics
  • C.10.2 Attention From a Structural Strength Viewpoint
  • C.11 Floating Production, Storage, and Offloading Systems
  • C.11.1 Structural Characteristics
  • C.11.2 Attention From a Structural Strength Viewpoint
  • Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

148,75 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok