High-Power Converters and AC Drives

 
 
Standards Information Network (Verlag)
  • 2. Auflage
  • |
  • erschienen am 13. Dezember 2016
  • |
  • 480 Seiten
 
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-1-119-15604-8 (ISBN)
 
A comprehensive reference of the latest developments in MV drive technology in the area of power converter topologies
This new edition reflects the recent technological advancements in the MV drive industry, such as advanced multilevel converters and drive configurations. It includes three new chapters, Control of Synchronous Motor Drives, Transformerless MV Drives, and Matrix Converter Fed Drives. In addition, there are extensively revised chapters on Multilevel Voltage Source Inverters and Voltage Source Inverter-Fed Drives. This book includes a systematic analysis on a variety of high-power multilevel converters, illustrates important concepts with simulations and experiments, introduces various megawatt drives produced by world leading drive manufacturers, and addresses practical problems and their mitigations methods. This new edition:
* Provides an in-depth discussion and analysis of various control schemes for the MV synchronous motor drives
* Examines new technologies developed to eliminate the isolation transformer in the MV drives
* Discusses the operating principle and modulation schemes of matrix converter (MC) topology and multi-module cascaded matrix converters (CMCs) for MV drives, and their application in commercial MV drives
Bin Wu is a Professor and Senior NSERC/Rockwell Automation Industrial Research Chair in Power Electronics and Electric Drives at Ryerson University, Canada. He is a fellow of Institute of Electrical and Electronics Engineers (IEEE), Engineering Institute of Canada (EIC), and Canadian Academy of Engineering (CAE). Dr. Wu has published more than 400 papers and holds more than 30 granted/pending US/European patents. He co-authored several books including Power Conversion and Control of Wind Energy Systems and Model Predictive Control of Wind Energy Conversion Systems (both by Wiley-IEEE Press).
Mehdi Narimani is a Postdoctoral Research Associate with the Department of Electrical and computer Engineering at Ryerson University, Canada, and Rockwell Automation Canada. He is a senior member of IEEE. Dr. Narimani is author/co-author of more than 50 technical papers and four US/European patents (issued/pending review). His current research interests include power conversion, high power converters, control of power electronics, and renewable energy systems.
2. Auflage
  • Englisch
  • New York
  • |
  • USA
John Wiley & Sons Inc
  • Für Beruf und Forschung
  • Überarbeitete Ausgabe
  • 23,60 MB
978-1-119-15604-8 (9781119156048)
weitere Ausgaben werden ermittelt
Bin Wu is a Professor and Senior NSERC/Rockwell Automation Industrial Research Chair in Power Electronics and Electric Drives at Ryerson University, Canada. He is a fellow of Institute of Electrical and Electronics Engineers (IEEE), Engineering Institute of Canada (EIC), and Canadian Academy of Engineering (CAE). Dr. Wu has published more than 400 papers and holds more than 30 granted/pending US/European patents. He co-authored several books including Power Conversion and Control of Wind Energy Systems and Model Predictive Control of Wind Energy Conversion Systems (both by Wiley-IEEE Press).
Mehdi Narimani is an Assistant Professor at the Department of Electrical and Computer Engineering at McMaster University, Canada. He is a senior member of IEEE. Dr. Narimani has published more than 55 journal and conference proceeding papers, and holds more than four issued/pending US/European patents. His current research interests include power conversion, high-power converters, control of power electronics, and renewable energy systems.
  • Intro
  • High-Power Converters and AC Drives
  • Contents
  • About the Authors
  • Preface and Acknowledgments
  • List of Abbreviations
  • Part One Introduction
  • 1 Introduction
  • 1.1 Overview of High-Power Drives
  • 1.2 Technical Requirements and Challenges
  • 1.2.1 Line-Side Requirements
  • 1.2.2 Motor-Side Challenges
  • 1.2.3 Switching Device Constraints
  • 1.2.4 Drive System Requirements
  • 1.3 Converter Configurations
  • 1.4 Industrial MV Drives
  • 1.5 Summary
  • References
  • Appendix
  • 2 High-Power Semiconductor Devices
  • 2.1 Introduction
  • 2.2 High-Power Switching Devices
  • 2.2.1 Diodes
  • 2.2.2 Silicon Controlled Rectifier (SCR)
  • 2.2.3 Gate Turn-Off (GTO) Thyristor
  • 2.2.4 Gate Commutated Thyristor (GCT)
  • 2.2.5 Insulated Gate Bipolar Transistor (IGBT)
  • 2.2.6 Other Switching Devices
  • 2.3 Operation of Series Connected Devices
  • 2.3.1 Main Causes of Voltage Unbalance
  • 2.3.2 Voltage Equalization for GCTs
  • 2.3.3 Voltage Equalization for IGBTs
  • 2.4 Summary
  • References
  • Part Two Multipulse Diode and SCR Rectifiers
  • 3 Multipulse Diode Rectifiers
  • 3.1 Introduction
  • 3.2 Six-Pulse Diode Rectifier
  • 3.2.1 Introduction
  • 3.2.2 Capacitive Load
  • 3.2.3 Definition of THD and PF
  • 3.2.4 Per Unit System
  • 3.2.5 THD and PF of Six-Pulse Diode Rectifier
  • 3.3 Series-Type Multipulse Diode Rectifiers
  • 3.3.1 12-Pulse Series-Type Diode Rectifier
  • 3.3.2 18-Pulse Series-Type Rectifier
  • 3.3.3 24-Pulse Series-Type Rectifier
  • 3.4 Separate-Type Multipulse Diode Rectifiers
  • 3.4.1 12-Pulse Separate-Type Diode Rectifier
  • 3.4.2 18- and 24-Pulse Separate-Type Diode Rectifiers
  • 3.5 Summary
  • References
  • 4 Multipulse SCR Rectifiers
  • 4.1 Introduction
  • 4.2 Six-Pulse SCR Rectifier
  • 4.2.1 Idealized Six-Pulse Rectifier
  • 4.2.2 Effect of Line Inductance
  • 4.2.3 Power Factor and THD
  • 4.3 12-Pulse SCR Rectifier
  • 4.3.1 Idealized 12-Pulse Rectifier
  • 4.3.2 Effect of Line and Leakage Inductances
  • 4.3.3 THD and PF
  • 4.4 18- and 24-Pulse SCR Rectifiers
  • 4.5 Summary
  • References
  • 5 Phase-Shifting Transformers
  • 5.1 Introduction
  • 5.2 YZ Phase-Shifting Transformers
  • 5.2.1 YZ-1 Transformers
  • 5.2.2 YZ-2 Transformers
  • 5.3 DZ Transformers
  • 5.4 Harmonic Current Cancellation
  • 5.4.1 Phase Displacement of Harmonic Currents
  • 5.4.2 Harmonic Cancellation
  • 5.5 Summary
  • Part Three Multilevel Voltage Source Converters
  • 6 Two-Level Voltage Source Inverter
  • 6.1 Introduction
  • 6.2 Sinusoidal PWM
  • 6.2.1 Modulation Scheme
  • 6.2.2 Harmonic Content
  • 6.2.3 Over-Modulation
  • 6.2.4 Third Harmonic Injection PWM
  • 6.3 Space Vector Modulation
  • 6.3.1 Switching States
  • 6.3.2 Space Vectors
  • 6.3.3 Dwell Time Calculation
  • 6.3.4 Modulation Index
  • 6.3.5 Switching Sequence
  • 6.3.6 Spectrum Analysis
  • 6.3.7 Even-Order Harmonic Elimination
  • 6.3.8 Discontinuous Space Vector Modulation
  • 6.4 Summary
  • References
  • 7 Cascaded H-Bridge Multilevel Inverters
  • 7.1 Introduction
  • 7.2 H-Bridge Inverter
  • 7.2.1 Bipolar Pulse Width Modulation
  • 7.2.2 Unipolar Pulse Width Modulation
  • 7.3 Multilevel Inverter Topologies
  • 7.3.1 CHB Inverter with Equal DC Voltage
  • 7.3.2 H-Bridges with Unequal DC Voltages
  • 7.4 Carrier-Based PWM Schemes
  • 7.4.1 Phase-Shifted Multicarrier Modulation
  • 7.4.2 Level-Shifted Multicarrier Modulation
  • 7.4.3 Comparison Between Phase- and Level-Shifted PWM Schemes
  • 7.5 Staircase Modulation
  • 7.6 Summary
  • References
  • 8 Diode-Clamped Multilevel Inverters
  • 8.1 Introduction
  • 8.2 Three-Level Inverter
  • 8.2.1 Converter Configuration
  • 8.2.2 Switching State
  • 8.2.3 Commutation
  • 8.3 Space Vector Modulation
  • 8.3.1 Stationary Space Vectors
  • 8.3.2 Dwell Time Calculation
  • 8.3.3 Relationship Between Vref Location and Dwell Times
  • 8.3.4 Switching Sequence Design
  • 8.3.5 Inverter Output Waveforms and Harmonic Content
  • 8.3.6 Even-Order Harmonic Elimination
  • 8.4 Neutral-Point Voltage Control
  • 8.4.1 Causes of Neutral-Point Voltage Deviation
  • 8.4.2 Effect of Motoring and Regenerative Operation
  • 8.4.3 Feedback Control of Neutral-Point Voltage
  • 8.5 Carrier-Based PWM Scheme and Neutral-Point Voltage Control
  • 8.6 Other Space Vector Modulation Algorithms
  • 8.6.1 Discontinuous Space Vector Modulation
  • 8.6.2 SVM Based on Two-Level Algorithm
  • 8.7 High-Level Diode-Clamped Inverters
  • 8.7.1 Four- and Five-Level Diode-Clamped Inverters
  • 8.7.2 Carrier-Based PWM for High-Level Diode-Clamped Inverters
  • 8.8 NPCH-Bridge Inverter
  • 8.8.1 Inverter Topology
  • 8.8.2 Modulation Scheme
  • 8.8.3 Waveforms and Harmonic Content
  • 8.9 Summary
  • References
  • Appendix
  • 9 Other Multilevel Voltage Source Inverters
  • 9.1 Introduction
  • 9.2 Multilevel Flying-Capacitor Inverter
  • 9.2.1 Inverter Configuration
  • 9.2.2 Modulation Schemes
  • 9.3 Active Neutral-Point Clamped Inverter
  • 9.3.1 Inverter Configuration
  • 9.3.2 Switching States
  • 9.3.3 Principle of Switch Power Loss Distribution
  • 9.3.4 Modulation Schemes and Device Power Loss Distribution
  • 9.3.5 Five-Level ANPC Inverter
  • 9.4 Neutral-Point Piloted Inverter
  • 9.4.1 Inverter Configuration
  • 9.4.2 Switching States
  • 9.4.3 Modulation Scheme and Neutral Point Voltage Control
  • 9.5 Nested Neutral-Point Clamped Inverter
  • 9.5.1 Inverter Configuration
  • 9.5.2 Switching States
  • 9.5.3 Principle of Flying-Capacitor Voltage Control
  • 9.5.4 Modulation Schemes with Capacitor Voltage Balancing Control
  • 9.5.5 High-Level NNPC Inverters
  • 9.6 Modular Multilevel Converter
  • 9.6.1 Inverter Configuration
  • 9.6.2 Switching States and Arm Voltage
  • 9.6.3 Modulation Scheme
  • 9.6.4 Voltage Balancing of Flying Capacitors in MMCs
  • 9.6.5 Capacitor Voltage Ripples and Circulating Currents
  • 9.7 Summary
  • References
  • Part Four PWM Current Source Converters
  • 10 PWM Current Source Inverters
  • 10.1 Introduction
  • 10.2 PWM Current Source Inverter
  • 10.2.1 Trapezoidal Modulation
  • 10.2.2 Selective Harmonic Elimination
  • 10.3 Space Vector Modulation
  • 10.3.1 Switching States
  • 10.3.2 Space Vectors
  • 10.3.3 Dwell Time Calculation
  • 10.3.4 Switching Sequence
  • 10.3.5 Harmonic Content
  • 10.3.6 SVM Versus TPWM and SHE
  • 10.4 Parallel Current Source Inverters
  • 10.4.1 Inverter Topology
  • 10.4.2 Space Vector Modulation for Parallel Inverters
  • 10.4.3 Effect of Medium Vectors on DC Currents
  • 10.4.4 DC Current Balance Control
  • 10.4.5 Experimental Verification
  • 10.5 Load-Commutated Inverter (LCI)
  • 10.6 Summary
  • References
  • Appendix
  • 11 PWM Current Source Rectifiers
  • 11.1 Introduction
  • 11.2 Single-Bridge Current Source Rectifier
  • 11.2.1 Introduction
  • 11.2.2 Selective Harmonic Elimination
  • 11.2.3 Rectifier DC Output Voltage
  • 11.2.4 Space Vector Modulation
  • 11.3 Dual-Bridge Current Source Rectifier
  • 11.3.1 Introduction
  • 11.3.2 PWM Schemes
  • 11.3.3 Harmonic Contents
  • 11.4 Power Factor Control
  • 11.4.1 Introduction
  • 11.4.2 Simultaneous and Control
  • 11.4.3 Power Factor Profile
  • 11.5 Active Damping Control
  • 11.5.1 Introduction
  • 11.5.2 Series and Parallel Resonant Modes
  • 11.5.3 Principle of Active Damping
  • 11.5.4 LC Resonance Suppression
  • 11.5.5 Harmonic Reduction
  • 11.5.6 Selection of Active Damping Resistance
  • 11.6 Summary
  • References
  • Appendix
  • Part Five High-Power AC Drives
  • 12 Voltage Source Inverter Fed Drives
  • 12.1 Introduction
  • 12.2 Two-Level VSI-Based MV Drives
  • 12.2.1 Power Converter Building Block
  • 12.2.2 Two-Level VSI Drive with Passive Front End
  • 12.3 Neutral Point Clamped (NPC) Inverter Fed Drives
  • 12.3.1 GCT-Based NPC Inverter Drives
  • 12.3.2 IGBT-Based NPC Inverter Drives
  • 12.4 Multilevel Cascaded H-Bridge (CHB) Inverter Fed Drives
  • 12.4.1 CHB Inverter Fed Drives for 2300 V/4160 V Motors
  • 12.4.2 CHB Inverter Drive for 6.6 kV/11.8 kV Motors
  • 12.5 NPCH-Bridge Inverter Fed Drives
  • 12.6 ANPC Inverter Fed Drive
  • 12.6.1 Three-Level ANPC Inverter Fed Drive
  • 12.6.2 Five-Level ANPC Inverter Fed Drive
  • 12.7 MMC Inverter Fed Drive
  • 12.8 10 KV-Class Drives with Multilevel Converters
  • 12.9 Summary
  • References
  • 13 Current Source Inverter Fed Drives
  • 13.1 Introduction
  • 13.2 CSI Drives With PWM Rectifiers
  • 13.2.1 CSI Drives with Single-Bridge PWM Rectifier
  • 13.2.2 CSI Drives for Custom Motors
  • 13.2.3 CSI Drives with Dual-Bridge PWM Rectifier
  • 13.3 Transformerless CSI Drive for Standard AC Motors
  • 13.4 CSI Drive with Multipulse SCR Rectifier
  • 13.4.1 CSI Drive with 18-Pulse SCR Rectifier
  • 13.4.2 Low-Cost CSI Drive with 6-Pulse SCR Rectifier
  • 13.5 LCI Drives for Synchronous Motors
  • 13.5.1 LCI Drives with 12-Pulse Input and 6-Pulse Output
  • 13.5.2 LCI Drives with 12-Pulse Input and 12-Pulse Output
  • 13.6 Summary
  • References
  • 14 Control of Induction Motor Drives
  • 14.1 Introduction
  • 14.2 Reference Frame Transformation
  • 14.2.1 abc/dq Frame Transformation
  • 14.2.2 abc Stationary Transformation
  • 14.3 Induction Motor Dynamic Models
  • 14.3.1 Space Vector Motor Model
  • 14.3.2 dq-Axis Motor Model
  • 14.3.3 Induction Motor Transient Characteristics
  • 14.4 Principle of Field Oriented Control (FOC)
  • 14.4.1 Field Orientation
  • 14.4.2 General Block Diagram of FOC
  • 14.5 Direct Field Oriented Control
  • 14.5.1 System Block Diagram
  • 14.5.2 Rotor Flux Calculator
  • 14.6 Indirect Field Oriented Control
  • 14.7 FOC for CSI Fed Drives
  • 14.8 Direct Torque Control (DTC)
  • 14.8.1 Principle of Direct Torque Control
  • 14.8.2 Switching Logic
  • 14.8.3 Stator Flux and Torque Calculation
  • 14.8.4 DTC Drive Simulation
  • 14.8.5 Comparison Between DTC and FOC Schemes
  • 14.9 Summary
  • References
  • 15 Control of Synchronous Motor Drives
  • 15.1 Introduction
  • 15.2 Modeling of Synchronous Motor
  • 15.2.1 Construction
  • 15.2.2 Dynamic Model of Synchronous Motors (SM)
  • 15.2.3 Steady-State Equivalent Circuits
  • 15.3 VSC FED SM Drive with zero d-axis current (ZDC) Control
  • 15.3.1 Introduction
  • 15.3.2 Principle of ZDC Control
  • 15.3.3 Implementation of ZDC Control in VSC Fed SM Drive
  • 15.3.4 Transient Analysis
  • 15.4 VSC FED SM Drive with MTPA Control
  • 15.4.1 Introduction
  • 15.4.2 Principle of MTPA Control
  • 15.4.3 Implementation of MTPA Control in VSC Fed SM Drive
  • 15.4.4 Transient Analysis
  • 15.5 VSC FED SM Drive with DTC Scheme
  • 15.5.1 Introduction
  • 15.5.2 Principle of DTC
  • 15.5.3 Implementation of DTC Control in VSC Fed SM Drive
  • 15.5.4 Transient Analysis
  • 15.6 Control of CSC FED SM Drives
  • 15.6.1 Introduction
  • 15.6.2 CSC Fed SM Drive with ZDC Control
  • 15.6.3 Transient Analysis of a CSC Fed SM Drive with ZDC Control
  • 15.6.4 CSC Fed SM Drive with MTPA Control
  • 15.7 Summary
  • References
  • Appendix
  • Part Six Special Topics on MV Drives
  • 16 Matrix Converter Fed MV Drives
  • 16.1 Introduction
  • 16.2 Classic Matrix Converter (MC)
  • 16.2.1 Classic MC Configuration
  • 16.2.2 Switching Constraints and Waveform Synthesis
  • 16.3 Three-Module Matrix Converter
  • 16.3.1 Three-Phase to Single-Phase (3 × 1) MC Module
  • 16.3.2 Three-Module MC Topology
  • 16.3.3 Input and Output Waveforms
  • 16.4 Multi-Module Cascaded Matrix Converter (CMC)
  • 16.4.1 Nine-Module CMC Topology
  • 16.4.2 Input and Output Waveforms
  • 16.5 Multi-Module CMC Fed MV Drive
  • 16.6 Summary
  • References
  • 17 Transformerless MV Drives
  • 17.1 Introduction
  • 17.2 Common-Mode Voltage Issues and Conventional Solution
  • 17.2.1 Definition of CM Voltages
  • 17.2.2 CM Voltage Waveforms
  • 17.2.3 Conventional Solution
  • 17.3 CM Voltage Reduction in Multilevel Vsc
  • 17.3.1 Space Vector Modulation for CM Voltage Reduction
  • 17.3.2 Reduction of CM Voltage Scheme 1 (RCM1)
  • 17.3.3 Reduction of CM Voltage Scheme 2 (RCM2)
  • 17.3.4 CM Voltage Reduction in n-Level VSC
  • 17.4 Transformerless Drives with Multilevel vsc
  • 17.4.1 Elimination of CM Voltages by Switching Scheme in Multilevel VSC
  • 17.4.2 Suppression of CM Voltage by CM Filters
  • 17.4.3 Combined Method of CM Filters and CM Voltage Reduction Schemes
  • 17.5 Transformerless CSI Fed Drives
  • 17.5.1 Conventional Solution
  • 17.5.2 Integrated DC Choke for Transformerless CSI Fed Drives
  • 17.6 Summary
  • References
  • Index
  • IEEE Press Series on Power Engineering
  • EULA

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

111,99 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen