Metallabenzenes

An Expert View
 
 
Standards Information Network (Verlag)
  • erschienen am 28. Juli 2017
  • |
  • 328 Seiten
 
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-1-119-06809-9 (ISBN)
 
The only comprehensive book covering of advances in metallabenzene chemistry--written by the leading experts in the field
Metallabenzenes: An Expert View provides comprehensive coverage of all aspects of metallabenzene chemistry, including syntheses, reactions, physical properties, and theoretical treatments of metallabenzenes. Fused ring metallabenzenes, heterometallabenzenes, and metallabenzenes that are p-bound to other metal fragments are also discussed in depth.
Although benzene itself was discovered in 1825, it wasn't until 1982 that the first metallabenzene was isolated. Since then, interest in these compounds has built steadily, and metallabenzene chemistry is now a flourishing sub discipline in its own right. A diverse range of synthetic approaches to these compounds have been devised, and new developments and discoveries have appeared regularly over the past several decades. Yet, until now, no books devoted to this fascinating and important class of chemical compounds have been available to researchers and students. This bookfills that gap in the literature with a comprehensive review of recent advances in metallabenzene chemistry theory and applications. Featuring contributions by an international group of experts in the field, each chapter summarizes important recent research in and significant contributions to various aspects of metallabenzene chemistry.
* Provides academics, researchers and graduate students with a comprehensive review of advances in metallabenzene research
* Covers fused-ring metallabenzenes--including metallanaphthalenes, metallabenzofurans, and metallabenzothiophenes--as well as p-bound heterometallabenzenes and metallabenzenes
* Reviews the latest computational studies that have led to the theoretical understanding of metallabenzenes
* Includes critical discussions of metallabenzene aromaticity, an area rarely covered by computational experts
Metallabenzenes: An Expert View is an important working resource for those working in organometallic chemistry, aromaticity, coordination chemistry, theoretical chemistry, catalysis and materials science. It is also an excellent text for graduate-level courses in those areas.
1. Auflage
  • Englisch
  • Newark
  • |
  • Großbritannien
John Wiley & Sons Inc
  • Für Beruf und Forschung
  • 25,03 MB
978-1-119-06809-9 (9781119068099)
weitere Ausgaben werden ermittelt
L. James Wright is a Professor in the School of Chemical Sciences, University of Auckland, New Zealand. Professor Wright has been an active researcher in the area of metallabenzenes for over 15 years and has published reviews and articles on various aspects of metallabenzene chemistry. His current research focuses on organometallic chemistry, including metallabenzenes and new carbon donor ligands, carbon donor ligands, development of new nitrogen donor ligands, macrocyclic complexes, CORMs, catalysis, oxidation chemistry and green chemistry.
  • Cover
  • Title Page
  • Copyright
  • Contents
  • List of Contributors
  • Preface
  • Chapter 1 Metallabenzenes and Fused-Ring Metallabenzenes of Osmium, Ruthenium and Iridium: Syntheses, Properties and Reactions
  • 1.1 Introduction
  • 1.2 Syntheses and Properties of Metallabenzenes with Methylthiolate Substituents
  • 1.2.1 Osmabenzenes
  • 1.2.2 Iridabenzenes
  • 1.3 Syntheses and Properties of Fused-Ring Metallabenzenes
  • 1.3.1 Osmabenzofurans
  • 1.3.2 Ruthenabenzofurans
  • 1.3.3 Iridabenzofurans
  • 1.3.4 Iridabenzothiophenes
  • 1.3.5 Iridabenzothiazolium Cations
  • 1.4 Reactions of Metallabenzenes and Metallabenzenoids
  • 1.4.1 Electrophilic Aromatic Substitution Reactions
  • 1.4.2 Rearrangement to Cyclopentadienyl Complexes
  • 1.4.3 Nucleophilic Aromatic Substitution Reactions
  • 1.5 Concluding Remarks
  • References
  • Chapter 2 The First Iridabenzenes: Syntheses, Properties, and Reactions
  • 2.1 Introduction
  • 2.2 Basic Theory
  • 2.3 Discovery of the First Stable Metallabenzenes
  • 2.4 Synthesis of Iridabenzene
  • 2.5 Valence Bond Structures and Electron Counting for Iridabenzene
  • 2.6 The Tris(trimethylphosphine) Reaction System
  • 2.7 Structure and Spectroscopy of Iridabenzene 3
  • 2.8 Chemical Reactivity of Iridabenzene 3
  • 2.8.1 Ligand Substitution
  • 2.8.2 Oxidative Addition/Oxidation
  • 2.8.3 Cycloaddition
  • 2.8.4 Theoretical Study of Cycloaddition
  • 2.8.5 Electrophilic Addition
  • 2.8.6 Coordination to Mo(CO)3
  • 2.9 Iridaphenol
  • 2.10 Synthesis and Spectroscopy of Iridapyrylium
  • 2.11 Valence Bond Structures and Electron Counting for Iridapyrylium
  • 2.12 Chemical Reactivity of Iridapyrylium 37
  • 2.12.1 Ligand Addition
  • 2.12.2 Cycloaddition
  • 2.13 Comparison of Iridabenzene 3 and Iridapyrylium 37
  • 2.14 Synthesis and Spectroscopy of Iridathiabenzene
  • 2.15 Structure of Iridathiabenzene 50
  • 2.16 Chemical Reactivity of Iridathiabenzene 50
  • 2.16.1 Ligand Addition and Cycloaddition
  • 2.16.2 Coordination to Other Metals
  • 2.17 Comparison of Iridathiabenzene 50 and Iridapyrylium 37
  • 2.18 Synthesis and Structure of a Neutral Iridathiabenzene
  • 2.19 Spectroscopy of Neutral Iridathiabenzene 56
  • 2.20 Chemical Reactivity of Neutral Iridathiabenzene 56
  • 2.21 Related Metal-Coordinated Metallabenzenes
  • 2.22 Aromaticity
  • 2.22.1 Electronic Structure
  • 2.22.2 Structural (Geometric) Features
  • 2.22.3 Magnetic Properties
  • 2.22.4 Stability
  • 2.22.5 Chemical Reactivity
  • 2.22.6 Conclusion
  • 2.23 Final Word
  • References
  • Chapter 3 Metallabenzenes and Valence Isomers via the Nucleophilic 3-Vinylcyclopropene Route
  • 3.1 Project Origin and Inspiration (A Nod to Binger, Bleeke, Grubbs, Hughes, and Roper)
  • 3.2 Ligand Synthesis (An Exercise in Over-Engineering)
  • 3.3 Iridabenzenes and Valence Isomers (Success after Six Long Years)
  • 3.3.1 Iridabenzene/Iridabenzvalene Synthesis
  • 3.3.2 Mechanisms of Iridabenzvalene Isomerization and Iridabenzene Rearrangement
  • 3.3.3 Iridabenzene/Iridabenzvalene Spectroscopic Properties
  • 3.3.4 Iridabenzene/Iridabenzvalene Solid-State Structures
  • 3.4 Platinabenzenes (How You Get Your Chemistry on a Beer Coaster)
  • 3.4.1 "Irrational" Platinabenzene Synthesis
  • 3.4.2 "Rational" Platinabenzene Synthesis
  • 3.4.3 Platinabenzene Spectroscopic Properties and Solid-State Structures
  • 3.5 Odds and Sods (Ones that Got Away)
  • 3.5.1 16-Electron, High Oxidation State Iridabenzenes
  • 3.5.2 Hammett Plot of Iridabenzvalene Isomerization
  • 3.5.3 Rhodabenzvalene and Putative Dewar Rhodabenzene
  • 3.6 Conclusion (So Long, and Thanks for All the Fish)
  • 3.7 Acknowledgements
  • References
  • Chapter 4 Iridabenzenes and Iridanaphthalenes with Supporting Tris(pyrazolyl)borate Ligands
  • 4.1 Introduction
  • 4.2 Synthetic Routes to Iridaaromatic Derivatives with Supporting Tris(pyrazolyl)borate Ligands
  • 4.2.1 Oxidatively Induced Ring Contraction
  • 4.2.2 Synthesis of Iridaaromatics by Ring Expansion Reactions
  • 4.2.2.1 Protonation of a Vinylidene-Iridacyclopentene
  • 4.2.2.2 Preparation of TpMe2-Iridaaromatics by Reaction of Olefins with Iridacyclopentadienes
  • 4.2.2.3 Other Procedures for Ring Expansion Reactions
  • 4.3 Reactivity of Iridaaromatics with Supporting Tris(pyrazolyl)borate ligands
  • 4.4 Structural Data for Iridaaromatics with Supporting Tris(pyrazolyl)borate Ligands
  • 4.5 Spectroscopic Data for Iridaaromatics with Supporting Tris(pyrazolyl)borate Ligands
  • 4.6 Conclusions
  • References
  • Chapter 5 Chemistry of Metallabenzynes and Rhenabenzenes
  • 5.1 Introduction
  • 5.2 Chemistry of Metallabenzynes
  • 5.2.1 Routes to Construct Metallabenzyne Rings
  • 5.2.1.1 Reactions of Terminal Alkynes with OsCl2(PPh3)3
  • 5.2.1.2 Reactions of Allenylcarbene and Vinylidene Complexes with Acetylides or Alkynes
  • 5.2.1.3 Oxidative Addition Reactions of Vinyl Carbyne Complexes
  • 5.2.1.4 Isomerization of Alkyne-Carbene Complexes
  • 5.2.2 Chemical Properties of Metallabenzynes
  • 5.2.2.1 Reactions Not Involving Carbons of the Metallabenzyne Ring
  • 5.2.2.2 Electrophilic Substitution Reactions
  • 5.2.2.3 Nucleophilic Addition Reactions
  • 5.2.2.4 Migratory Insertion Reactions
  • 5.2.3 Structural Properties of Metallabenzynes
  • 5.2.4 Ring Strain of Metallabenzynes
  • 5.2.5 Electronic Structures of Metallabenzynes
  • 5.2.5.1 Aromatic Properties of Metallabenzynes
  • 5.3 Chemistry of Rhenabenzenes
  • 5.3.1 Synthesis of Rhenabenzenes
  • 5.3.2 Structural and Aromatic Properties of Rhenabenzenes
  • 5.3.3 Rearrangement of Low-valent Rhenabenzene to ?5-Cyclopentadienyl Complexes
  • 5.4 Summary
  • References
  • Chapter 6 Metallabenzenoid Compounds Bearing Phosphonium Substituents
  • 6.1 Synthesis
  • 6.1.1 [5+1] Synthesis
  • 6.1.1.1 Syntheses Starting from HC=CCH(OH)C=CH
  • 6.1.1.2 Syntheses Starting from HC=CCH(OH)CH=CH2 and HC=CCCH3(OH)CH=CH2
  • 6.1.1.3 Syntheses Starting from HC=CCH(OH)Ph
  • 6.1.1.4 Synthesis Starting from HC=CCH(OH)Et
  • 6.1.2 [4+2] Synthesis
  • 6.1.3 [3+3] Synthesis
  • 6.2 Structure and Bonding
  • 6.3 Reactions
  • 6.3.1 Ligand Substitution Reactions
  • 6.3.2 Nucleophilic Addition and Nucleophilic Aromatic Substitution Reactions
  • 6.3.3 Cycloaddition Reactions
  • 6.3.4 Formation of Unsaturated Organic Rings
  • 6.4 Physical Properties
  • 6.4.1 Electrochemical Properties
  • 6.4.2 Optical Properties
  • 6.4.3 Other Properties
  • 6.5 Polycyclic Metallabenzenoid Compounds Bearing Phosphonium Substituents
  • 6.5.1 Synthesis by Means of SNAr Reactions
  • 6.5.2 Synthesis by Means of Electrophilic Cyclization Reactions
  • 6.6 Future Prospects
  • References
  • Chapter 7 Theoretical Studies of Metallabenzenes: From Bonding Situation to Reactivity
  • 7.1 Introduction
  • 7.2 Structure and Bonding Situation
  • 7.2.1 Bonding Situation and Molecular Orbitals
  • 7.2.2 Aromaticity of Metallabenzenes
  • 7.2.2.1 [4n+2]-rule
  • 7.2.2.2 Absolute Hardness
  • 7.2.2.3 Magnetic Descriptors
  • 7.2.2.4 Energetic Descriptors
  • 7.3 Computational Studies on Synthetic Pathways towards Metallabenzenes
  • 7.4 Computational Studies on the Reactivity of Metallabenzenes
  • 7.4.1 Electrophilic Aromatic Substitution Reactions
  • 7.4.2 Nucleophilic Aromatic Substitution Reactions
  • 7.4.3 Addition and Cycloaddition Reactions
  • 7.4.4 Rearrangement Reactions
  • 7.5 Concluding Remarks and Outlook
  • 7.6 Acknowledgements
  • References
  • Index
  • Supplemental Images
  • EULA

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

142,99 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen