Batch and Semi-batch Reactors

Practical Guides in Chemical Engineering
 
 
Butterworth-Heinemann (Verlag)
  • 1. Auflage
  • |
  • erschienen am 26. Februar 2015
  • |
  • 108 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-801465-3 (ISBN)
 

Batch and Semi-batch Reactors: Practical Guides in Chemical Engineering is a cluster of short texts that provide a focused introductory view on a single subject.

The full library presents a basic understanding of the main topics in the chemical process industries, allowing engineering professionals to quickly access information.

Each 'pocket publication' can be easily carried or accessed electronically, giving users a highly practical and applied presentation of the first principles engineers need know on a moment's notice.

The focused facts provided in each guide help users converse with experts in the field, attempt their own initial troubleshooting, check calculations, and solve rudimentary problems.


  • Practical, short, concise information on the basics in a variety of topics related to chemical engineering
  • Supported by industry examples to help readers solve real-world problems
  • Single subject volumes provide key facts for professionals
  • Pocket publication format can be easily carried or accessed electronically


Jonathan Worstell earned his Physics degree from Northwestern University then switched to the chemical sciences, earning an MS in Chemistry from Ball State University and a PhD in Applied Chemistry from Colorado School of Mines. Dr. Worstell worked at Eli Lilly and Company and Northwestern University Medical School prior to starting a thirty year career in the petrochemical industry. After retiring from the petrochemical industry, he began an academic career at University of Houston where he teaches senior level chemical engineering courses. Dr. Worstell also consults with several global petrochemical companies.
  • Englisch
  • Saint Louis
  • |
  • USA
Elsevier Science
  • 3,27 MB
978-0-12-801465-3 (9780128014653)
0128014652 (0128014652)
weitere Ausgaben werden ermittelt
1 - Front Cover [Seite 1]
2 - Batch and Semi-batch Reactors [Seite 4]
3 - Copyright Page [Seite 5]
4 - Dedication [Seite 6]
5 - Contents [Seite 8]
6 - 1 Introduction [Seite 10]
6.1 - Chemical Reactions and Processes [Seite 10]
6.2 - Batch and Semi-Batch Reactors [Seite 12]
6.3 - Design of Batch and Semi-Batch Reactors [Seite 14]
6.4 - Summary [Seite 15]
6.5 - References [Seite 15]
7 - 2 Batch Reactors [Seite 16]
7.1 - Quantitative Description of Batch Reactors [Seite 16]
7.2 - What Is RA? [Seite 18]
7.3 - Elucidation of Kinetic Relationships [Seite 22]
7.4 - Summary [Seite 38]
7.5 - References [Seite 39]
8 - 3 Scaling Batch Reactors [Seite 40]
8.1 - Scaling Concentration, Temperature, Volume, Agitation [Seite 40]
8.2 - Scaling Heat Transfer [Seite 54]
8.3 - Summary [Seite 58]
8.4 - References [Seite 58]
9 - 4 Semi-Batch Reactors [Seite 60]
9.1 - Reactor Choice: Batch or Semi-Batch Reactor [Seite 60]
9.2 - Miscible Liquid-Liquid Semi-Batch Processes [Seite 65]
9.2.1 - Kinetic Analysis [Seite 65]
9.2.2 - Thermal Analysis [Seite 70]
9.3 - Immiscible Liquid-liquid Semi-Batch Processes [Seite 72]
9.3.1 - Kinetic Analysis [Seite 72]
9.3.2 - Thermal Analysis [Seite 79]
9.4 - Gas-Liquid Semi-Batch Processes [Seite 81]
9.4.1 - Kinetic Analysis [Seite 81]
9.4.2 - Thermal Analysis [Seite 91]
9.5 - Summary [Seite 92]
9.6 - References [Seite 92]
10 - 5 Batch and Semi-Batch Operations [Seite 94]
10.1 - Process Cycle Time [Seite 94]
10.2 - Process Operating Temperature [Seite 105]
10.3 - Summary [Seite 109]
10.4 - References [Seite 109]
Chapter 2

Batch Reactors


This chapter presents a quantitative description of batch reactors. It also "derives" the variables which control a chemical reaction conducted in a batch reactor. This chapter includes a discussion about specifying the proportionality constant, i.e., the reaction rate constant, which quantifies the relationship between chemical reaction rate and concentration. This chapter uses the saponification of ethyl acetate to demonstrate the various procedures for specifying the reaction rate constant.

Keywords


Batch reactor; chemical reaction rate; reaction rate constant; reaction order; initial reaction rate; initial reactant concentration

Quantitative Description of Batch Reactors


Consider the typical batch reactor, which in the laboratory is a spherical glass container with ports for reagent addition and sample removal and possibly a centerline port accommodating an agitator shaft driven by an elevated, i.e., overhead, electric motor. An alternate method of mixing is to place a magnetic stirring bar in the reactor and drive it via a rotating magnet placed beneath the reactor.

We generally do not conduct gas-phase reactions in batch reactors. For a constant liquid volume, constant density reaction or process, the component balance for a laboratory batch reactor is

[A]?t+(vr?[A]?r+v?r?[A]??+vfrsin??[A]?f)=DAB(1r2??r(r2?[A]?r)+1r2sin????(?[A]??)+1r2sin2??2[A]?f2)+RA

where [A] is the concentration of component A (mol/m3); t is the time (seconds, s); r is the radial direction, generally taken from the geometric center point of the spherical reactor (m); ? is the polar angle taken from the vertical reference axis to the point in question (dimensionless); f is the azimuthal angle or longitude taken around the reference axis to the point in question (dimensionless); vr is the velocity in the radial direction (m/s); v? is the polar angular velocity (m/s); vf is the azimuthal velocity (m/s); DAB is the diffusivity (m2/s) of component A in solvent B, if a solvent B is present; and, RA is the formation of A or the consumption of A by chemical reaction (mol/m3*s).

We assume the concentration of component A in the r, ?, and f directions is constant due to agitation and the absence of directed convection1; therefore

vr?[A]?r+v?r?[A]??+vfrsin??[A]?f)=0

If the agitator maintains continuous, thorough mixing of the reactor's contents, then we assume molecular diffusion to be negligible during the chemical reaction; thus

AB(1r2??r(r2?[A]?r)+1r2sin????(?[A]??)+1r2sin2??2[A]?f2)=0

The component balance for A therefore reduces to

d[A]dt)Spherical=RA

At a production facility, the typical batch reactor is a circular cylinder mounted vertically in a support structure. We generally weld hemispheric caps to the top and bottom of the cylinder. A vertical agitator shaft extends through the top cap of the cylinder. A bearing seal surrounds the vertical shaft as it passes through the top cap, thereby isolating the reactor's contents from the environment. An electric motor powers the agitator shaft via a gearbox. Various nozzles with block valves penetrate the top cap; liquid feeds enter the reactor through these nozzles. The finished product exits the reactor through a valve generally placed at the center of the bottom cap. The component balance for such a reactor is

[A]?t+(vr?[A]?r+v?r?[A]??+vz?[A]?z)=DAB(1r??r(r?[A]?r)+1r2?2[A]??2+?2[A]?z2)+RA

where [A] is the concentration of component A (mol/m3); t is the time (s); r is the radial direction, generally taken from the geometric center line of the cylindrical reactor (m); z is the vertical axis of the cylinder (m); ? is the azimuthal angle or longitude taken around the z axis (dimensionless); vr is the velocity in the radial direction (m/s); vz is the velocity in the axial direction (m); v? is the azimuthal velocity (m/s); DAB is the diffusivity (m2/s) of component A in solvent B; and, RA is the formation of A or the consumption of A by chemical reaction (mol/m3*s).

As for the laboratory batch reactor, we assume the concentration of component A in the r, ?, and z directions is constant due to agitation and the absence of directed convection.1 Therefore

vr?[A]?r+v?r?[A]?r+vz?[A]?z)=0

If the agitator maintains continuous, thorough mixing of the reactor's contents, then we assume molecular diffusion to be negligible during the chemical reaction; thus

1r??r(r?[A]?r)+1r2?2[A]??2+?2[A]?z2)=0

The component balance for a commercial-sized circular, cylindrical batch reactor reduces to

d[A]dt)Cylinder=RA

We can make two statements with regard to

d[A]dt)Cylinder=RAand(d[A]dt)Spherical=RA

First, neither rate depends upon a geometric variable, so long as the concentrations and reaction temperature in the cylindrical reactor equal the concentrations in the spherical reactor, which is generally the case for liquid-phase reactions. Thus, upscaling and downscaling a chemical reaction within a batch reactor is relatively straightforward, at least for constant volume, constant density, liquid-phase reactions.2 If the reaction volume changes or the density of the contained liquid changes during reaction, then we must consider geometric similarity during upscaling and downscaling. Second, both rates depend upon RA.

What Is RA?


To upscale or downscale a batch reactor, we need to know upon what RA depends. Consider the generalized chemical reaction

*Reactantsp*Products

where r and p are the stoichiometric quantities for Reactants and Products, respectively. We know from thermodynamics that, when a chemical reaction reaches equilibrium, the rate of product formation from reactants equals the rate of reactant formation from products. Mathematically

=kForwardkReverse

where K is the equilibrium constant for the chemical reaction; kForward is a constant describing the rate of product formation from reactants; and, kReverse is a constant describing the rate of reactant formation from products. We also know from thermodynamics that

=[Products]p[Reactants]r

ForwardkReverse=[Products]p[Reactants]r

or

Forward[Reactants]r=kReverse[Products]p

Note that for Forward[Reactants]r, kForward has units of m3/mole)r-1(1/s). Therefore, if r=1, then

m3/mole)r-1(1/s)=(m3/mole)1-1(1/s)=(m3/mole)0(1/s)=(1/s)

The same is true for Reverse[Products]p. In other words, Forward[Reactants]r and Reverse[Products]p have the same units as RA, which leads to our equating them. Thus, RA in the forward reaction direction must be a function of reactant concentration while in the reverse reaction direction it must be a function of product concentration. The kinetic theory of gases also indicates that the collision of gas molecules and their resultant reaction with each other depends upon the concentration of each component gas.3

Note that r and p in the above equation are the stoichiometric quantities for the reaction after it reaches equilibrium. However, chemical reaction rate studies, i.e., kinetic studies, do not investigate the equilibrium condition of chemical reactions; thermodynamics investigates the equilibrium condition of a chemical reaction. Kinetics investigates the rate at which a chemical reaction reaches its equilibrium condition. With regard to kinetics, our strongest assertion can only be

[Reactant]dt=-kForward[Reactant]x

or

[Product]dt=-kReverse[Product]y

where x and y are unknowns not necessarily related to the stoichiometric quantities r and p of the reaction.

The above reaction rate equations indicate that we are eventually going to integrate [Reactant] from [Reactant]t=0 at t=0, when we start the chemical reaction, to [Reactant]t at time t, when we stop the chemical reaction. That integration gives us

Reactant]t-[Reactant]t=0

which will be negative since

Reactant]t<<[Reactant]t=0

But, for chemical reactions, rates of change are positive. Therefore, we insert the negative sign in the above equation to obtain a positive rate of change. We interpret the negative sign as denoting consumption of a chemical species; we interpret a positive sign as denoting formation of a chemical species.

Thermodynamics also indicates how the equilibrium constant depends on changing temperature. The Clausius-Clapeyron...

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

34,45 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok