Practical Java Machine Learning

Projects with Google Cloud Platform and Amazon Web Services
 
 
Apress
  • erschienen am 23. Oktober 2018
  • |
  • XXIII, 392 Seiten
 
E-Book | PDF mit Wasserzeichen-DRM | Systemvoraussetzungen
978-1-4842-3951-3 (ISBN)
 
Build machine learning (ML) solutions for Java development. This book shows you that when designing ML apps, data is the key driver and must be considered throughout all phases of the project life cycle. Practical Java Machine Learning helps you understand the importance of data and how to organize it for use within your ML project. You will be introduced to tools which can help you identify and manage your data including JSON, visualization, NoSQL databases, and cloud platforms including Google Cloud Platform and Amazon Web Services.
Practical Java Machine Learning includes multiple projects, with particular focus on the Android mobile platform and features such as sensors, camera, and connectivity, each of which produce data that can power unique machine learning solutions. You will learn to build a variety of applications that demonstrate the capabilities of the Google Cloud Platform machine learning API, including data visualization for Java; document classification using the Weka ML environment; audio file classification for Android using ML with spectrogram voice data; and machine learning using device sensor data.
After reading this book, you will come away with case study examples and projects that you can take away as templates for re-use and exploration for your own machine learning programming projects with Java.
What You Will Learn
  • Identify, organize, and architect the data required for ML projects
  • Deploy ML solutions in conjunction with cloud providers such as Google and Amazon
  • Determine which algorithm is the most appropriate for a specific ML problem
  • Implement Java ML solutions on Android mobile devices
  • Create Java ML solutions to work with sensor data
  • Build Java streaming based solutions
Who This Book Is For
Experienced Java developers who have not implemented machine learning techniques before.
1st ed.
  • Englisch
  • CA
  • |
  • USA
APRESS
  • 155
  • |
  • 155 s/w Abbildungen
  • 15,01 MB
978-1-4842-3951-3 (9781484239513)
10.1007/978-1-4842-3951-3
weitere Ausgaben werden ermittelt
Mark Wickham is an active developer and has been a developer for many years, mostly in Java. He is passionate about exploring advances in artificial intelligence and machine learning using Java. New software approaches, applied to the ever expanding volume of data we now have available to us, enables us to create Java solutions which were not before conceivable. He is a frequent speaker at developer conferences. His popular classes cover practical topics such as connectivity, push messaging, and audio/video. Mark has led software development teams for Motorola, delivering infrastructure solutions to global telecommunications customers. While at Motorola, Mark also led product management and product marketing teams in the Asia Pacific region. Mark has been involved in software and technology for more than 30 years and began to focus on the Android platform in 2009, creating private cloud and tablet based solutions for the enterprise. Mark majored in Computer Science and Physics at Creighton University, and later obtained an MBA from the University of Washington and the Hong Kong University of Science and Technology. Mark is also active as a freelance video producer, photographer, and enjoys recording live music. Previously Mark wrote Practical Android (Apress, 2018).
1. Introduction IDE Setup - Eclipse IDE Setup - Android Studio Java Setup Machine Learning Performance with Java Importance of Analytics Initiatives Corporate ML Objectives Business Case for Deploying ML Machine Learning Concerns Developing an ML Methodology State of the Art: Monitoring Research Papers
2. Data: The Fuel for Machine Learning Think Like a Data Scientist Data Pre-Processing JSON and NoSQL Databases ARFF and CSV Files Finding Public Data Creating your Own Data Data Visualization with Java + Javascript Project: DataViz
3. Leveraging Cloud Platforms Google Cloud Platform Amazon AWS Using Machine Learning API's Project: GCP API Leveraging Cloud Platforms to Create Models
4. Algorithms: The Brains of Machine Learning Overview of Algorithms Supervised Learning Unsupervised Learning Linear Models for Prediction and Classification Naive Bayes for Document Classification Clustering Decision Trees Choosing the Right Algorithm Creating Your Competitve Advantage
5. Java Machine Learning Environments Overview Choosing a Java Environment Deep dive: The Weka Workbench Weka Capabilities Weka Add-ons Rapidminer Overview Project: Document Classification with Weka
6. Integrating Models

Dateiformat: PDF
Kopierschutz: Wasserzeichen-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Verwenden Sie zum Lesen die kostenlose Software Adobe Reader, Adobe Digital Editions oder einen anderen PDF-Viewer Ihrer Wahl (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie die kostenlose App Adobe Digital Editions oder eine andere Lese-App für E-Books (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nur bedingt: Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Wasserzeichen-DRM wird hier ein "weicher" Kopierschutz verwendet. Daher ist technisch zwar alles möglich - sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

39,99 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Wasserzeichen-DRM
siehe Systemvoraussetzungen
E-Book bestellen