Utilization of Slag in Civil Infrastructure Construction

Utilization of Slag in Civil Infrastructure Construction
 
 
Woodhead Publishing
  • 1. Auflage
  • |
  • erschienen am 24. Juni 2016
  • |
  • 442 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
978-0-08-100397-8 (ISBN)
 

The Utilization of Slag in Civil Infrastructure Construction strives to integrate the theory, research, and practice of slag utilization, including the production and processing of slags. The topics covered include: production and smelting processes for metals; chemical and physical properties of slags; pretreatment and post-treatment technology to enhance slag properties; potential environmental impact; mechanisms of potential expansion; special testing methods and characteristics; slag processing for aggregate and cementitious applications; suitability of slags for use in specific applications; overall properties of materials containing slags; and commercialization and economics. The focus of the book is on slag utilization technology, with a review of the basic properties and an exploration of how its use in the end product will be technically sound, environment-friendly, and economic.


  • Covers the production, processing, and utilization of a broad range of ferrous, non-ferrous, and non-metallurgical slags
  • Provides information on applicable methods for a particular slag and its utilization to reduce potential environmental impacts and promote natural resource sustainability
  • Presents the overall technology of transferring a slag from the waste stream into a useful materials resource
  • Provides a detailed review of the appropriate utilization of each slag from processing right through to aggregate and cementitious use requirements


Dr George Wang is an Associate Professor in the College of Engineering and Technology at East Carolina University, North Carolina, USA. He has over 30 years of experience in special construction materials, advanced highway pavement, transportation infrastructure construction, and construction project management.
  • Englisch
  • Cambridge
  • |
  • Großbritannien
Elsevier Science
  • 18,19 MB
978-0-08-100397-8 (9780081003978)
0081003978 (0081003978)
weitere Ausgaben werden ermittelt
  • Front Cover
  • The Utilization of Slag in Civil Infrastructure Construction
  • Copyright
  • Dedication
  • Contents
  • Preface
  • Notations and abbreviated formulae
  • List of acronyms
  • SI* (modern metric) conversion factors
  • Woodhead Publishing Series in Civil and Structural Engineering
  • 1: Introduction
  • 1.1 Introduction to slag utilization in civil infrastructure construction
  • 1.2 Sustainability in construction, mining, and mineral production
  • 1.3 Outline of the book
  • References
  • 2: Ferrous metal production and ferrous slags
  • 2.1 Introduction
  • 2.2 Ironmaking process and BF slag formation
  • 2.2.1 Overview of ironmaking
  • 2.2.2 BF slag formation
  • 2.2.2.1 Slag formation
  • 2.2.2.2 Flux proportion
  • 2.2.2.3 Particle size
  • 2.2.2.4 Viscosity
  • 2.3 Basic properties of BF slag
  • 2.3.1 Chemical and mineral compositions
  • 2.3.1.1 Chemical composition
  • 2.3.1.2 Mineral composition
  • 2.3.1.3 Dicalcium silicate
  • 2.3.2 Basic physical properties
  • 2.4 Steelmaking processes and steel slag formation
  • 2.4.1 BOF steelmaking and slag formation
  • 2.4.2 EAF steelmaking and slag formation
  • 2.4.3 Ladle furnace refining and ladle slag
  • 2.5 Basic properties of steel slag
  • 2.5.1 Chemical and mineral compositions
  • 2.5.1.1 Chemical composition
  • 2.5.1.2 Mineral composition of steel slag
  • 2.5.1.3 Free lime and existing form
  • 2.5.1.4 MgO and its crystalline form
  • 2.5.2 Basic physical properties
  • 2.6 Summary
  • Questions
  • References
  • 3: Nonferrous metal extraction and nonferrous slags
  • 3.1 Introduction
  • 3.2 Copper extraction and copper slag
  • 3.2.1 Copper extraction process and copper slag formation
  • 3.2.2 Basic properties of copper slag
  • 3.3 Nickel extraction and nickel slag
  • 3.3.1 Nickel extraction process and nickel slag formation
  • 3.3.2 Basic properties of nickel slag
  • 3.4 Lead extraction and lead slag
  • 3.4.1 Lead extraction process and slag formation
  • 3.4.2 Basic properties of lead and lead-zinc slag
  • 3.5 Zinc extraction and zinc slag
  • 3.5.1 Zinc extraction process and zinc slag formation
  • 3.5.2 Basic properties of zinc slag
  • 3.6 Tin extraction and tin slag
  • 3.6.1 Tin extraction process and tin slag formation
  • 3.6.2 Basic properties of tin slag
  • 3.7 Summary
  • Questions
  • References
  • 4: Nonmetallurgical slags
  • 4.1 Introduction
  • 4.2 Phosphorus slag
  • 4.2.1 Phosphorus production and phosphorus slag formation
  • 4.2.2 Basic properties of phosphorus slag
  • 4.3 Boiler slag
  • 4.3.1 Coal combustion and boiler slag formation
  • 4.3.2 Basic properties of boiler slag
  • 4.4 Incinerator slag
  • 4.4.1 MSW incineration and incinerator slag formation
  • 4.4.1.1 Movable grate
  • 4.4.1.2 Fluidized bed
  • 4.4.1.3 Rotary kiln
  • 4.4.2 Basic properties of incinerator slag
  • 4.5 Summary
  • Questions
  • References
  • 5: Slag processing
  • 5.1 Introduction
  • 5.2 Evaluation of slag and slag products
  • 5.2.1 Inherent variation of slag properties and performance requirements
  • 5.2.2 Evaluation methodology
  • 5.2.2.1 Volume expansion test
  • 5.2.2.2 Powdering ratio test
  • 5.2.2.3 Autoclave disruption test
  • 5.2.2.4 XRD analysis
  • 5.2.2.5 SEM analysis
  • 5.2.2.6 EDS analysis
  • 5.2.2.7 Gamma-ray spectroscopy analysis
  • 5.2.2.8 DTA analysis
  • 5.2.2.9 Autoclave treatment
  • 5.2.2.10 Chemical composition analysis
  • 5.3 Blast furnace slag processing
  • 5.3.1 Air-cooling
  • 5.3.2 Granulating
  • 5.3.3 Expanding
  • 5.3.4 Pelletizing
  • 5.3.5 Dry granulation
  • 5.4 Steel slag processing
  • 5.4.1 Pretreatment
  • 5.4.1.1 Addition of sand
  • 5.4.1.2 Unit weight modification
  • 5.4.1.3 Water quenching
  • 5.4.1.4 Modify leaching property
  • 5.4.1.5 Flux alteration
  • 5.4.2 Posttreatment
  • 5.4.2.1 Crushing and screening
  • 5.4.2.2 Stockpiling and aging
  • 5.4.2.3 Hot pouring
  • 5.4.2.4 Air chilling
  • 5.4.2.5 Water quenching
  • 5.4.2.6 Plate chilling
  • 5.4.2.7 Instant slag chilling process
  • 5.4.2.8 Self-powdering
  • 5.4.2.9 Spent acid treatment
  • 5.4.2.10 Property modification
  • 5.4.2.11 Steam treating
  • 5.4.2.12 Self-dissolving
  • 5.4.2.13 Pressure treating
  • 5.4.2.14 Other methods
  • 5.4.3 Mechanical handling
  • 5.5 Summary
  • Questions
  • References
  • 6: Philosophy of utilization of slag in civil infrastructure construction
  • 6.1 Introduction
  • 6.2 The methodology of slag research and utilization
  • 6.2.1 The relationships between slag characteristics and end product performance
  • 6.2.2 Quantification of the properties of slag and end products
  • 6.3 Blending use of slag with other by-product or nonconventional materials
  • 6.3.1 The ultimate goal of blending use on nonconventional
  • 6.3.2 Potential recycled materials and by-products that can be co-used with slag
  • 6.3.2.1 Scrap tire rubber
  • 6.3.2.2 Phosphogypsum
  • 6.3.2.3 Recycled concrete aggregate
  • 6.4 Summary
  • Questions
  • References
  • 7: Environmental aspects of slag utilization
  • 7.1 Introduction
  • 7.2 Regulations and environmental evaluation
  • 7.2.1 The necessity for performance-based regulations and guidance
  • 7.2.1.1 Environmental law enactment in the United States
  • 7.2.1.2 Experience in Europe
  • 7.2.1.3 The necessity for performance-related regulations
  • 7.2.1.4 Life-cycle assessment consideration in slag applications
  • 7.2.2 Environmental evaluation by leaching test
  • 7.2.2.1 Leaching process and mechanism
  • Solubility controlled
  • Availability controlled
  • Release controlled
  • 7.2.2.2 Leaching assessment and test methods
  • ASTM D3987 standard practice for shake extraction of solid waste with water
  • ASTM D4874 standard test method for leaching solid waste in a column apparatus
  • Texas 7-day distilled water leachate test
  • Field leachate tests with lysimeter
  • 7.3 Special circumstances of slag use
  • 7.3.1 Leaching limits
  • 7.3.2 Ferrous slags
  • 7.3.2.1 Blast furnace slag
  • Sulfur and stability
  • Stability
  • Tuffa and Thaumasite
  • Blast furnace slag in water
  • 7.3.2.2 Steel slag
  • Slag use as armor stone
  • Gray staining on HMA surface
  • 7.3.3 Nonferrous slags
  • 7.3.3.1 Zinc slag
  • 7.3.4 Nonmelurgical slags
  • 7.3.4.1 Radioactivity of phosphorus slag
  • 7.3.4.2 Municipal incinerator ash and slag
  • 7.4 Summary
  • Questions
  • References
  • 8: Unbound slag aggregate use in construction
  • 8.1 Introduction
  • 8.2 Technical requirements for aggregates and end products
  • 8.2.1 General requirements for aggregates
  • 8.2.1.1 Gradation
  • 8.2.1.2 Strength
  • 8.2.1.3 Shape and texture
  • 8.2.1.4 Durability
  • 8.2.2 General requirements for end products
  • 8.2.2.1 Base and subbase of highway pavements
  • 8.2.2.2 Graduation requirements of subbase materials
  • 8.2.2.3 Graduation requirements of base course materials
  • 8.2.2.4 Surface course materials
  • 8.2.2.5 Moisture content
  • 8.2.2.6 Embankment
  • 8.2.3 Measurement of the properties of aggregate
  • 8.2.3.1 California bearing ratio
  • 8.2.3.2 Abrasion resistance
  • 8.2.3.3 Micro-deval test
  • 8.2.3.4 Freezing and thawing test
  • 8.2.3.5 Sulfate soundness test
  • 8.2.4 Construction procedures
  • 8.2.4.1 Subgrade preparation
  • 8.2.4.2 Spreading the base materials
  • 8.2.4.3 Compaction of aggregate base
  • 8.2.4.4 Field compaction control
  • 8.2.4.5 Field moisture control
  • 8.2.4.6 Effective compaction control
  • 8.2.4.7 Field density tests
  • 8.3 Use of unbound slag aggregate in construction
  • 8.3.1 Granular base and subbase
  • 8.3.2 Ballast and subballast
  • 8.3.2.1 Properties of slag ballast
  • Durability
  • Stability
  • Electrical resistance
  • 8.3.2.2 Installation methods
  • 8.3.2.3 Cost
  • 8.3.3 Geotechnical uses
  • 8.3.3.1 Research
  • 8.3.3.2 Implementation
  • 8.3.4 Other uses
  • 8.3.4.1 Railway track base
  • 8.3.4.2 Marine use of carbonated steel slag
  • 8.4 Research and development
  • 8.4.1 Criteria establishment
  • 8.4.2 Mixing use with other by-products
  • 8.4.2.1 Mixture of steel slag and dredged clay
  • 8.5 Summary
  • Questions
  • References
  • 9: Usability criteria for slag use as a granular material
  • 9.1 Introduction
  • 9.2 Quantification for use in nonrestrained conditions
  • 9.2.1 Basic properties of steel slag and expansion mechanism
  • 9.2.1.1 Chemical and mineral compositions
  • 9.2.1.2 Expansion mechanism
  • 9.2.2 Theoretical volume expansion
  • 9.2.2.1 Hydration of free lime and volume change
  • 9.2.2.2 Volume expansion due to physical change
  • 9.2.2.3 An equation for prediction of steel slag volume expansion
  • 9.2.3 Laboratory volume expansion testing
  • 9.2.3.1 Test method and equipment employed
  • 9.2.3.2 Test results
  • 9.3 The development of usability criteria for nonrestrained use
  • 9.3.1 Usability criteria for the use of steel slag as granular material
  • 9.3.2 Modification of the criterion
  • 9.3.3 Discussion
  • 9.4 Summary
  • Questions
  • References
  • 10: Slag use in asphalt paving
  • 10.1 Introduction
  • 10.2 Technical requirements for aggregates in asphalt concrete
  • 10.2.1 Consensus properties and measurement
  • 10.2.1.1 Coarse aggregate angularity
  • 10.2.1.2 Fine aggregate angularity
  • 10.2.1.3 Flat and elongated particles
  • 10.2.1.4 Sand equivalent
  • 10.2.2 Source properties and measurement
  • 10.2.2.1 Toughness
  • 10.2.2.2 Soundness
  • 10.2.2.3 Deleterious materials
  • 10.2.3 Gradation requirements
  • 10.3 General requirements for asphalt pavements and surface treatment techniques
  • 10.3.1 General performance requirements for asphalt pavement structure
  • 10.3.1.1 Resistance to permeant deformation
  • 10.3.1.2 Friction or skid resistance
  • 10.3.1.3 Fatigue resistance
  • 10.3.1.4 Resistance to low-temperature cracking
  • 10.3.1.5 Resistance to moisture induced damage (stripping resistance)
  • 10.3.1.6 Workability (compactibility)
  • 10.3.2 Surface treatment techniques and requirements
  • 10.3.2.1 Sand seal
  • 10.3.2.2 Slurry seal
  • 10.3.2.3 Microsurfacing
  • 10.3.2.4 Chip seal
  • 10.3.2.5 Open graded friction course
  • 10.3.2.6 Stone mastic (matrix) asphalt
  • 10.3.3 Construction procedures
  • 10.4 Practical use of slag in asphalt paving
  • 10.4.1 Steel slag use in hot-mix asphalt
  • 10.4.1.1 Early development of slag use in asphalt paving
  • 10.4.1.2 Recent development
  • 10.4.1.3 Marshall stability
  • 10.4.1.4 Permanent deformation prevention
  • 10.4.1.5 Skid resistance
  • 10.4.1.6 Free lime and antistripping
  • 10.4.1.7 Optimum slag replacement
  • 10.4.1.8 Compactibility
  • 10.4.1.9 Life cycle cost analysis
  • 10.4.2 Other ferrous, nonferrous, and nonmetallurgical slag use in hot-mix asphalt
  • 10.4.2.1 Air-cooled blast furnace slag
  • 10.4.2.2 Copper slag
  • 10.4.2.3 Nickel slag
  • 10.4.2.4 Municipal solid waste incineration slag aggregate
  • 10.4.3 Slag use in surface treatment and other paving applications
  • 10.4.3.1 Stone Mastic Matrix (SMA)
  • 10.4.3.2 Porous pavement
  • 10.4.3.3 Warm-mix asphalt
  • 10.4.3.4 Slurry seal
  • 10.4.3.5 Chip seal
  • 10.4.3.6 Cold mix-foamed asphalt
  • 10.4.3.7 Cold in-place recycling
  • 10.4.4 Properties and performance of asphalt materials containing slag aggregate
  • 10.4.4.1 Basic Marshall and physical properties
  • 10.4.4.2 Indirect tensile strength
  • 10.4.4.3 Resilient modulus
  • 10.4.4.4 Durability
  • 10.4.4.5 Fatigue behavior
  • 10.4.4.6 Electrical sensitivity
  • 10.4.4.7 High-temperature stability and low-temperature crack resistance
  • 10.4.4.8 Volumetric stability and expansion issues
  • 10.5 Research, development, and trends in slag use in asphalt paving
  • 10.5.1 Slag asphalt absorption
  • 10.5.2 Expansion
  • 10.5.3 Reclaimed asphalt pavement containing slag aggregate
  • 10.5.4 Life cycle cost analysis and recyclability
  • 10.5.5 Quieter pavement
  • 10.5.6 Abrasion dust of slag HMA pavement
  • 10.5.7 Thin HMA overlays high friction surface treatment
  • 10.5.8 Blending use of steel slag with recycled concrete aggregate and fly ash
  • 10.6 Summary
  • Questions
  • References
  • 11: Slag use as an aggregate in concrete and cement-based materials
  • 11.1 Introduction
  • 11.2 Mechanical behavior of concrete containing steel slag aggregate
  • 11.2.1 Strength-related properties
  • 11.2.1.1 Materials
  • 11.2.1.2 Strength and elastic modulus
  • 11.2.2 Fracture-related properties
  • 11.2.2.1 Results of brittleness and fracture toughness
  • Brittleness
  • Fracture toughness
  • 11.2.3 Microlevel examination and the mechanism of modified properties
  • 11.2.3.1 Bond test
  • Test program
  • Results
  • 11.2.3.2 Microhardness test
  • Experiment setup
  • Results
  • 11.3 Development of slag aggregate use in rigid matrixes
  • 11.3.1 Steel slag use in concrete
  • 11.3.1.1 Strength and mechanical properties
  • 11.3.1.2 Durability
  • 11.3.1.3 Workability
  • 11.3.1.4 Practical use
  • 11.3.1.5 Blend use with other materials
  • 11.3.1.6 Alkali-aggregate reactivity check
  • 11.3.2 Slag use in other rigid matrices
  • 11.3.2.1 Slag use in brick making
  • 11.3.2.2 Self-packing concrete
  • 11.3.3 Nonferrous slag use in concrete
  • 11.3.3.1 Copper slag use as a fine aggregate
  • 11.3.3.2 The use of lead-zinc slag in concrete
  • 11.3.3.3 Ferrochromium slag
  • 11.3.3.4 Municipal solid waste incinerator slag
  • 11.3.3.5 Use of EAF slag in pervious concrete
  • 11.4 Summary
  • Questions
  • References
  • 12: Usability criteria for slag use in rigid matrices
  • 12.1 Introduction
  • 12.2 Quantification for use in restrained conditions or rigid matrices
  • 12.2.1 The concept of expansion force
  • 12.2.1.1 Bulk expansion force Pe and three-dimensional expansion force per unit volume, se
  • 12.2.1.2 Difference A
  • 12.2.1.3 Difference B
  • 12.2.2 Test methods development
  • 12.2.2.1 Expansion force test
  • 12.2.2.2 Disruption ratio test
  • 12.2.3 Quantification of expansion forces
  • 12.2.3.1 Quantification of expansion force of a single steel slag particle
  • 12.2.4 Laboratory experimental study
  • 12.2.4.1 Laboratory testing
  • 12.2.4.2 Discussion
  • 12.3 Usability criterion development
  • 12.3.1 Usability criterion deduction
  • 12.3.1.1 Disruption model for steel slag aggregate concrete
  • 12.3.1.2 Usability criterion for steel slag in concrete
  • 12.3.1.3 Determination of expansion force of steel slag
  • 12.3.2 Experimental verification
  • 12.3.2.1 Experimental results
  • 12.3.2.2 Calculation
  • 12.3.3 Portable expansion force testing device development
  • 12.4 Summary
  • Questions
  • References
  • 13: Slag use in cement manufacture and cementitious applications
  • 13.1 Introduction
  • 13.1.1 Types of cement
  • 13.2 Raw materials of Portland cement and end product requirements
  • 13.2.1 Mineral sources, material process, and property requirements
  • 13.2.2 Environmental and energy aspects
  • 13.2.2.1 Emissions in cement production
  • 13.2.2.2 Energy use in cement production
  • 13.2.2.3 Solid wastes
  • 13.2.2.4 Water use and discharge in cement production
  • 13.2.2.5 Energy benefits by using slag in cement manufacture
  • 13.3 Cementitious properties of slags and their utilization in cement manufacture
  • 13.3.1 Hydraulic activity of GBFS
  • 13.3.1.1 Hydraulic activity
  • 13.3.1.2 Factors determining cementitious properties
  • 13.3.2 GBFS in cement manufacture
  • 13.3.2.1 Use directly in concrete
  • 13.3.2.2 Slag cement use for special applications
  • 13.3.3 Mineral compositions and hydraulic activity of steel slag
  • 13.3.3.1 Basicity of alkalinity of steel slag
  • 13.3.3.2 Calculation of active mineral in steel slag
  • 13.3.3.3 Existing form of free CaO and its effect on stability
  • 13.3.3.4 Effect of MgO on the stability of SSBC
  • 13.3.4 The use of steel slag in cement manufacture
  • 13.3.4.1 The process
  • 13.3.4.2 Mixing proportion and strength
  • 13.3.4.3 Laboratory pilot experimental study using BOF slag in blended cement-materials for strength and stability te ...
  • 13.3.4.4 Experimental method and strength results
  • 13.3.4.5 BOF slag used in cement clinker making
  • 13.3.5 Hydraulic activity of nonferrous slags and utilization
  • 13.3.5.1 Hydraulic properties of granulated copper slag
  • 13.3.5.2 Granulated copper slag use in blended cement
  • 13.3.5.3 Use of copper slag in cement clinker production
  • 13.3.5.4 Use of copper slag in blended cement
  • 13.3.5.5 Municipal solid waste incinerator bottom ash slag
  • 13.4 Special considerations for slag use in cement manufacture
  • 13.4.1 Stability and other properties of slag blended cement
  • 13.4.1.1 Stability
  • 13.4.1.2 Characteristics of SSBC
  • 13.4.2 Grindability of slag
  • 13.4.3 Quantification criterion for steel slag use in blended cement manufacture
  • 13.4.3.1 Addition criterion for steel slag in SSBC
  • 13.5 Other cementitious applications of slag
  • 13.6 Summary
  • Questions
  • References
  • 14: Case studies on slag utilization
  • 14.1 Introduction
  • 14.2 Using EAF slag in Egnatia Highway construction
  • 14.2.1 Background information
  • 14.2.1.1 Adaptation to bituminous surfacing
  • 14.2.2 Materials, mix design, and placement
  • 14.2.2.1 Aggregates (coarse, fine, and filler)
  • 14.2.2.2 Bituminous binder
  • 14.2.2.3 Mix design
  • 14.2.2.4 Placement
  • 14.2.3 Testing verification
  • 14.2.4 Use of excess EAF filler as mineral filler in SCC
  • 14.2.5 Summary
  • 14.3 Using steel slag aggregate for stone column ground
  • 14.3.1 Vibrofloatation ground stabilization
  • 14.3.2 The history of EAF slag use
  • 14.3.3 Contracts and volumes
  • 14.3.3.1 Physical and mechanical properties
  • 14.3.4 Chemical and environmental tests
  • 14.3.5 Summary
  • 14.4 Using nickel slag in highway construction
  • 14.4.1 Laboratory evaluation program
  • 14.4.1.1 Materials
  • 14.4.1.2 Physical properties
  • 14.4.1.3 Chemical composition analysis
  • 14.4.1.4 Scanning electron microscope analysis
  • 14.4.1.5 Volumetric expansion testing
  • 14.4.1.6 PSV and AAV
  • 14.4.1.7 Petrographic examinations
  • 14.4.1.8 Autoclave disruption testing
  • 14.4.1.9 HMA mix designs
  • 14.4.1.10 HMA rut resistance testing
  • 14.4.2 Using nickel slag in highway construction
  • 14.4.3 Summary
  • Questions
  • References
  • 15: Comprehensive utilization of slag as system engineering: Challenges and opportunities
  • 15.1 Introduction
  • 15.2 Contributing components in the integrated slag utilization system
  • 15.2.1 Policies and regulations
  • 15.2.1.1 European legislation
  • 15.2.1.2 Registration, evaluation and authorization of chemicals
  • 15.2.1.3 The United States
  • 15.2.1.4 National environmental policy act
  • 15.2.1.5 Resource conservation and recovery act
  • 15.2.1.6 Pollution prevention act
  • 15.2.1.7 Toxic substances control act
  • 15.2.1.8 Human Health Risk Assessment
  • 15.2.2 Standards and specifications
  • 15.2.3 Quality control and quality management
  • 15.2.4 Test methods and usability criteria development
  • 15.2.5 Slag classification
  • 15.2.5.1 The necessity
  • 15.2.5.2 Classification and regulation
  • 15.2.5.3 Definition of waste and interpretations of the EC Court of Justice
  • 15.2.6 Education and training
  • 15.2.6.1 Education
  • 15.2.6.2 Training
  • 15.2.7 Commercialization
  • 15.2.7.1 Education
  • 15.2.7.2 Projects demonstration
  • 15.2.7.3 Incentives and subsidies
  • 15.2.7.4 Marketing slag product
  • 15.3 Compilation of slag specifications
  • 15.3.1 Standard test methods and specifications for slag and end products containing slag
  • 15.3.2 Slag uses
  • 15.4 Summary
  • Questions
  • References
  • Appendix 1: Procedures to determine disruption ratio of expansive slag
  • Appendix 2: Procedures to determine metallic iron content in steel slag
  • Appendix 3: Procedures to determine free calcium oxide content in steel slag
  • A3.1 Step 1 Total calcium content (benzoic titration method)
  • A3.1.1 Preparation of reagents
  • A3.1.2 Preparation of slag sample
  • A3.1.3 Titration: benzoic acid standard solution
  • A3.1.4 Calculation
  • A3.2 Step 2 Determination of Ca(OH) 2 content in slag
  • A3.2.1 Equipment and apparatus
  • A3.2.2 Reagents
  • A3.2.3 Procedures and calculation
  • Appendix 4: Procedures to determine free magnesium oxide
  • A4.1 Determination of Total Magnesium Oxide
  • A4.1.1 Reagents
  • A4.1.2 Procedure
  • A4.1.3 Calculation
  • A4.2 Determination of Free Magnesium Oxide in Slag
  • A4.2.1 Reagents
  • A4.2.2 Procedure
  • Appendix 5: Nickel slag sampling protocol
  • A5.1 Sampling procedure
  • Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

196,35 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok