Novel Fire Retardant Polymers and Composite Materials

 
 
Woodhead Publishing
  • 1. Auflage
  • |
  • erschienen am 21. August 2016
  • |
  • 342 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-08-100163-9 (ISBN)
 

Novel Fire Retardant Polymers and Composite Materials reviews the latest scientific developments and technological advances in the design and manufacture of fire retardant polymers and composite materials. Fire retardant polymeric materials are used in a broad range of applications in fields such as aviation, automotive, computer, construction, electronics, and telecommunications. It is essential to have a better understanding of the scientific technology used in the design and manufacture of fire-resistant materials and their end products. This book includes the latest developments in fire retardant technologies for different polymeric material systems, such as PU, PP, PE, PLA, epoxy, rubber, textile, phenol resin, and PA, etc.


  • Provides cutting-edge research in flame retardant materials, relevant to both scientific and industrial applications
  • Presents the latest and most up-to-date fire retardant technologies
  • Discusses the most popular fire retardant polymer systems
  • Includes the latest developments in fire retardant technologies for different polymeric material systems, such as PU, PP, PE, PLA, epoxy, rubber, textile, phenol resin, and PA
  • Englisch
  • Cambridge
Elsevier Science
  • 8,20 MB
978-0-08-100163-9 (9780081001639)
0081001630 (0081001630)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Novel Fire Retardant Polymers and Composite Materials
  • Related titles
  • Novel Fire Retardant Polymers and Composite Materials
  • Copyright
  • Contents
  • List of contributors
  • Woodhead Publishing Series in Composites Science and Engineering
  • 1 - Introduction
  • 2 - Fire-retardant high-performance epoxy-based materials
  • 2.1 Application requirements and specifications for epoxy resin systems
  • 2.1.1 Epoxy resin systems and their application
  • 2.1.2 Fire-retardant epoxy resin formulations for matrix resins
  • 2.2 Recent proceedings in the development of advanced flame-resistant epoxy resin materials
  • 2.2.1 Current trends in fire retardancy
  • 2.2.2 Intrinsically flame-protected epoxy resin
  • 2.2.3 Novel organophosphorus compounds as efficient flame retardants
  • 2.2.3.1 Reactive phosphorus-based flame retardants
  • 2.2.3.2 Nonreactive phosphorus-based flame retardants
  • 2.2.4 Silicon-based, boron-containing, and other organic flame retardants
  • 2.2.4.1 Silicon compounds
  • 2.2.4.2 Boron compounds
  • 2.2.4.3 Sulfur compounds
  • 2.2.5 Nitrogen-based flame retardants
  • 2.2.6 Application of inorganic flame retardants
  • 2.2.6.1 Intumescent flame-retardant systems and advances in microencapsulation of inorganic fillers
  • 2.2.6.2 Metal hydroxide nanoparticles
  • 2.2.7 Graphene, carbon nanotubes, and carbon nanoparticles
  • 2.2.8 Synergistic flame-retardant formulations
  • 2.2.8.1 Synergy between silicon and phosphorus compounds
  • 2.2.8.2 Synergy between phosphorus- and nitrogen-containing flame retardants
  • 2.2.8.3 Synergistic mixtures of organophosphorus compounds and inorganic fillers
  • 2.2.9 Flame-retardant nanocomposites
  • 2.3 Impact of fiber reinforcement on the fire-retardant behavior of epoxy-based composites
  • 2.4 Influence of fire retardants on crucial material properties of epoxy resin materials
  • 2.5 Evaluation of the state of the art of science and technology and future challenges in the flame retardancy of epoxy-based ma...
  • References
  • 3 - Novel fire-retardant coatings
  • 3.2 Application areas of fire-retardant coatings
  • 3.3 Traditional fire-protective coatings
  • 3.4 UV curing flame-retardant coatings
  • 3.4.1 Halogen-based coating systems
  • 3.4.2 Phosphorus-based coating systems
  • 3.4.3 Nitrogen-based coating systems
  • 3.4.4 Silicon-based coating systems
  • 3.4.5 Multielement coating systems
  • 3.4.6 Nanocomposite-based coating systems
  • 3.5 Fire-retardant coatings formed by layer-by-layer assembly
  • 3.5.1 Inorganic layer-by-layer coatings
  • 3.5.2 Inorganic-organic hybrid or intumescent layer-by-layer coatings
  • 3.6 Summary and outlook
  • References
  • 4 - Fire-retardant polylactic acid-based materials: preparation, properties, and mechanism
  • 4.1 Introduction
  • 4.2 Recent advances in the development of flame-retardant polylactic acid-based materials
  • 4.2.1 Additive-type flame-retardant PLA-based materials
  • 4.2.1.1 Inorganic flame-retardant additives
  • 4.2.1.2 Organic flame-retardant additives
  • 4.2.1.3 Intumescent flame-retardant PLA systems
  • 4.2.1.4 Use of nanofillers as flame retardants
  • Montmorillonite
  • Expandable graphite
  • Carbon nanotubes
  • Layered double hydroxide
  • Polyhedral oligomeric silsesquioxane
  • Sepiolite
  • Silica
  • Phosphazene
  • Others
  • 4.2.1.5 Flame-retardant fiber-reinforced PLA composites
  • 4.2.2 Reactive-type flame-retardant PLA-based materials
  • 4.3 Influence of fire retardants on thermal and mechanical properties of polylactic acid-based materials
  • 4.3.1 Thermal properties
  • 4.3.2 Mechanical properties
  • 4.4 Flame-retardant mechanism proposed for polylactic acid-based materials
  • 4.4.1 Gas-phase flame-retardant mechanism
  • 4.4.2 Condensed-phase flame-retardant mechanism
  • 4.5 Summary of the state of the art of science and technology and future perspectives in flame retardancy of polylactic acid-bas...
  • References
  • 5 - Fire-retardant recyclable and biobased polymer composites
  • 5.1 Introduction
  • 5.2 Flame retardancy of fully recyclable self-reinforced composites
  • 5.3 Synthesis and fire retardancy of thermosetting biomatrices
  • 5.4 Fire retardancy of thermoplastic biomatrices
  • 5.5 Fire-retardant modification of biofibres
  • 5.6 Flame retardancy of biobased composites
  • 5.7 Characterization of fire-retarded biocomposites
  • 5.8 Applications
  • 5.9 Future trends
  • Sources of further information and advice
  • List of abbreviations
  • References
  • 6 - High-performance fire-retardant polyamide materials
  • 6.1 Introduction
  • 6.2 Thermal degradation of polyamides
  • 6.3 Flame retardancy of polyamides: from fundamentals to new chemistry
  • 6.3.1 Magnesium hydroxide
  • 6.3.2 Halogen-containing flame retardants
  • 6.3.3 Ammonium polyphosphate
  • 6.3.4 Other phosphorus-containing flame retardants
  • 6.3.4.1 Red phosphorus
  • 6.3.4.2 Organic phosphates, phosphonates and phosphinates
  • 6.3.5 Melamine and its derivatives
  • 6.4 New solutions involving interfacial modifications in glass-fibre-reinforced polyamides
  • 6.5 Smoke and toxicity of polyamide combustion
  • 6.6 Current developments and future trends
  • 6.6.1 Coating
  • 6.6.2 Cross-linking by irradiation
  • 6.6.3 Grafted flame-retarded polyamide
  • 6.6.4 Flame retardancy of biobased polyamides
  • References
  • 7 - Flame retardancy of flexible polyurethane foams: traditional approaches versus layer-by-layer assemblies
  • 7.1 Introduction
  • 7.2 Polyurethane chemical structure
  • 7.3 Polyurethane thermal decomposition
  • 7.3.1 Thermal decomposition in nitrogen
  • 7.3.2 Thermo-oxidative decomposition in air
  • 7.3.3 Scorch
  • 7.3.4 Parameters affecting thermal decomposition
  • 7.3.4.1 Hard segments
  • 7.3.4.2 Soft segments
  • 7.3.4.3 Chain extenders
  • 7.3.4.4 Isocyanate:hydroxyl ratio
  • 7.3.4.5 Catalysts
  • 7.3.4.6 Cross-link density
  • 7.4 Polyurethane combustion and toxicity of combustion gases
  • 7.4.1 Combustion
  • 7.4.2 Toxicity of combustion gases
  • 7.5 Traditional approaches for conferring flame retardancy to flexible polyurethane foams
  • 7.5.1 Phosphorus/halogen-based flame retardants
  • 7.5.2 Phosphorus-based flame retardants
  • 7.5.3 Nitrogen-based flame retardants
  • 7.6 Novel approaches for conferring flame retardancy to polyurethane foams. Layer-by-layer assembly: fundamental aspects of this...
  • 7.7 Application of layer-by-layer assemblies to flame retardancy and flexible polyurethane foams
  • 7.7.1 Nanoparticle-based layer-by-layer coatings
  • 7.7.2 Polyelectrolyte-based layer-by-layer coatings
  • 7.7.3 Flame-retardant mechanism of layer-by-layer coatings
  • 7.8 Improving the efficiency of layer-by-layer coatings towards industrialization: future perspectives of layer-by-layer in foam...
  • 7.9 Conclusions and future perspectives
  • List of abbreviations
  • References
  • 8 - Functional layered double hydroxides and their use in fire-retardant polymeric materials
  • 8.2 Synthesis and functionalization of LDH
  • 8.2.1 Synthesis of LDH intercalated with inorganic anions
  • 8.2.2 Synthesis of LDH intercalated with organic anions
  • 8.2.2.1 Anion exchange
  • 8.2.2.2 Regeneration
  • 8.2.2.3 One-step route
  • 8.2.3 Delamination of LDH
  • 8.3 Preparation of LDH-based polymer nanocomposites
  • 8.3.1 In situ polymerization
  • 8.3.2 Solution method
  • 8.3.3 Melting compounding
  • 8.4 Fire behaviors of LDH-based polymer nanocomposites
  • 8.4.1 Polyolefin
  • 8.4.2 Poly(methyl methacrylate)
  • 8.4.3 Epoxy resin
  • 8.4.4 Polyester
  • 8.4.5 Others
  • 8.5 Outlook
  • References
  • 9 - Silicon-based mesoporous materials and organic-inorganic hybrid materials: from preparation to application in fire retardancy of polymeric materials
  • 9.2.1 Preparation strategy of mesoporous silica
  • 9.2.2 Structural characterization of mesoporous silica
  • 9.2.3 Thermal behavior of polymer composites containing mesoporous silica
  • 9.2.4 Combustion behavior and flame-retardant mechanism of polymer composites containing mesoporous silica
  • 9.2.5 Mechanical properties of polymer composites containing mesoporous silica
  • 9.3 Organic-inorganic hybrid materials as highly flame retardant or synergist
  • 9.3.1 Preparation strategy and structural characterization of organic-inorganic hybrid materials
  • 9.3.2 Thermal behavior of polymer composites containing organic-inorganic hybrid material
  • 9.3.3 Flammability of polymer composites with organic-inorganic hybrid material
  • 9.3.4 Mechanical property and other influence of polymer composites containing organ-inorganic hybrid materials
  • 9.4 Conclusions
  • References
  • 10 - Fire-retardant carbon-fiber-reinforced thermoset composites
  • 10.1 Introduction
  • 10.2 Thermal decomposition mechanisms of organic polymers and fire hazards of composites
  • 10.3 Flame-retardant solutions suitable for carbon-fiber-reinforced epoxy composites
  • 10.3.1 Inorganic flame-retardant fillers for epoxy resin
  • 10.3.1.1 Aluminum trihydroxide
  • 10.3.1.2 Magnesium hydroxide
  • 10.3.1.3 Zinc stannate, zinc hydroxystannate, and zinc borate
  • 10.3.1.4 Antimony oxide
  • 10.3.2 Nonreactive phosphorus-based flame retardants suitable for epoxy-based composites
  • 10.3.2.1 Red phosphorus
  • 10.3.2.2 Ammonium polyphosphate
  • 10.3.2.3 Phosphates and phosphonates
  • 10.3.3 Reactive phosphorus-based flame retardants suitable for epoxy-based composites
  • 10.3.4 Inherent flame-retardant epoxy for reinforced composites
  • 10.3.5 Commercial carbon fibers for flame-retardant composites
  • 10.3.6 Flame-retardant epoxy-based carbon-fiber composites using fire-resistant surface coatings
  • 10.4 Conclusion
  • References
  • 11 - Flame retardance and thermal stability of polymer/graphene nanosheet oxide composites
  • 11.1 Introduction
  • 11.2 Experimental
  • 11.2.1 Materials
  • 11.2.2 Preparation of graphene nanosheet oxide
  • 11.2.3 Synthesis of functionalized graphene oxide nanosheets
  • 11.2.4 Preparation of epoxy/DPPES-GNO nanocomposites
  • 11.2.5 Measurements
  • 11.3 Results and discussion
  • 11.3.1 Dispersion stability in polar and nonpolar solvents
  • 11.3.2 FTIR of GNO and DPPES-GNO
  • 11.3.3 XRD of GNO and DPPES-GNO
  • 11.3.4 XPS analysis
  • 11.3.5 Raman
  • 11.3.6 Morphology of GNO and DPPES-GNO
  • 11.3.7 Thermal properties of epoxy/DPPES-GNO composites
  • 11.3.8 Flame retardancy
  • 11.3.9 Mechanism of flame retardancy
  • 11.4 Conclusions
  • Acknowledgments
  • References
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • L
  • M
  • N
  • O
  • P
  • R
  • S
  • T
  • U
  • V
  • X
  • Z
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

208,25 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok