Advances in Solar Heating and Cooling

 
 
Woodhead Publishing
  • 1. Auflage
  • |
  • erschienen am 25. Mai 2016
  • |
  • 596 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-08-100302-2 (ISBN)
 

Advances in Solar Heating and Cooling presents new information on the growing concerns about climate change, the security of energy supplies, and the ongoing interest in replacing fossil fuels with renewable energy sources.

The amount of energy used for heating and cooling is very significant, estimated, for example, as half of final energy consumption in Europe. Solar thermal installations have the potential to meet a large proportion of the heating and cooling needs of both buildings and industry and the number of solar thermal installations is increasing rapidly. This book provides an authoritative review of the latest research in solar heating and cooling technologies and applications.


  • Provides researchers in academia and industry with an authoritative overview of heating and cooling for buildings and industry in one convenient volume
  • Part III, 'Solar cooling technologies' is contributed by authors from Shanghai Jiao Tong University, which is a world-leader in this area
  • Covers advanced applications from zero-energy buildings, through industrial process heat to district heating and cooling
  • Englisch
  • London
Elsevier Science
  • 19,44 MB
978-0-08-100302-2 (9780081003022)
0081003021 (0081003021)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Advances in Solar Heating and Cooling
  • Related titles
  • Advances in Solar Heating and Cooling
  • Copyright
  • Contents
  • List of contributors
  • Woodhead Publishing Series in Energy
  • One - Introduction
  • 1 - Introduction to solar heating and cooling systems
  • 1.1 Background
  • 1.2 Overview of solar heating and cooling systems
  • 1.2.1 Solar energy
  • 1.2.1.1 Nontracking solar collectors
  • 1.2.1.2 Tracking solar collectors
  • 1.2.1.3 Solar photovoltaics
  • 1.2.2 Solar heating technologies
  • 1.2.2.1 Passive solar space-heating
  • 1.2.2.2 Passive solar water-heating
  • 1.2.2.3 Active solar space- and water-heating
  • 1.2.2.4 Other feasible systems
  • 1.2.3 Solar cooling technologies
  • 1.2.3.1 Solar photovoltaic-driven refrigeration and dehumidification
  • 1.2.3.2 Solar thermal-driven refrigeration
  • 1.2.3.3 Solar thermal-driven dehumidification
  • 1.2.4 Heat storage technologies
  • 1.2.4.1 Sensible heat storage
  • 1.2.4.2 Latent heat storage
  • 1.2.4.3 Sorption heat storage
  • 1.2.4.4 Thermochemical heat storage
  • 1.3 Technology roadmap
  • References
  • 2 - Resource assessment and site selection for solar heating and cooling systems
  • 2.1 Introduction
  • 2.2 Definition of solar resources
  • 2.3 Relationship between solar resources and solar collectors
  • 2.4 Measuring and modeling the solar resource
  • 2.4.1 Solar resource measurement techniques
  • 2.4.2 Solar resource estimates using satellite data retrievals
  • 2.4.3 Other solar resource estimation techniques
  • 2.5 Solar resource data sets important to siting and sizing solar heating and cooling (SHC) technologies
  • 2.5.1 Resource variability-spatial
  • 2.5.2 Resource variability-temporal
  • 2.5.3 Typical meteorological year data sets
  • 2.5.4 P50/P90 data sets
  • 2.5.5 The influence of data uncertainty on P90 values
  • 2.5.6 Reducing uncertainty: site adaptation
  • 2.6 Sources of solar resource information
  • 2.7 Summary
  • References
  • 3 - Energy efficiency and environmental impact of solar heating and cooling systems
  • 3.1 Introduction
  • 3.2 Energy use in the built environment
  • 3.3 Worldwide market penetration of solar heating and cooling systems
  • 3.4 Overview of technologies used for solar heating and cooling systems and their efficiency
  • 3.5 Environmental impact of solar heating and cooling systems
  • 3.6 Conclusions
  • References
  • Two - Solar heating systems
  • 4 - Nontracking solar collection technologies for solar heating and cooling systems
  • 4.1 Introduction
  • 4.2 Flat plate collectors
  • 4.3 Flat plate collectors with diffuse reflectors
  • 4.4 Compound parabolic collectors
  • 4.5 Reverse flat plate collectors
  • 4.6 Evacuated tube collectors
  • 4.7 Conclusions
  • Glossary
  • References
  • 5 - Tracking solar collection technologies for solar heating and cooling systems
  • 5.1 Definition of solar tracking technology
  • 5.2 Classification and features
  • 5.2.1 Manual tracking
  • 5.2.2 Automatic tracking
  • 5.3 Control system
  • 5.3.1 Principle of manual tracking control
  • 5.3.2 Principle of closed-loop control
  • 5.3.3 Principle of open-loop control
  • 5.3.4 Principle of hybrid control
  • 5.4 Practical examples
  • 5.4.1 Single-axis tracking
  • 5.4.2 Dual-axis tracking
  • References
  • 6 - Passive solar space heating
  • 6.1 Introduction
  • 6.2 Sun and built forms
  • 6.3 Passive solar heating systems materials and components
  • 6.3.1 Solar capture systems
  • 6.3.2 Heat storage systems
  • 6.3.3 Heat distribution
  • 6.4 Passive solar heating systems technologies
  • 6.4.1 Direct passive solar heating systems
  • 6.4.2 Indirect systems
  • 6.4.3 Isolated passive solar heating systems
  • 6.4.4 Annual geo-solar systems
  • 6.5 Economics and energy efficiency of passive solar heating systems
  • 6.6 Passive solar heating systems at high latitudes: a case study
  • 6.6.1 Environmental performance analyses of the Living Lab
  • 6.7 Conclusions and future trends
  • References
  • 7 - Innovations in passive solar water heating systems
  • 7.1 Introduction
  • 7.2 Flat plate collector-thermosiphon
  • 7.2.1 Thermal performance of solar collectors
  • 7.2.2 Absorber plate design
  • 7.2.3 Coatings and nanofluids
  • 7.3 Evacuated tube collector
  • 7.3.1 All-glass evacuated tube collector
  • 7.3.2 Heat pipe collector
  • 7.3.3 U-tube collector
  • 7.4 Integrated collector storage systems and compound parabolic collectors
  • 7.4.1 The solar water heating system dawn
  • 7.4.2 Facing heat losses
  • 7.4.3 The coupled collector
  • 7.5 Hybrid photovoltaic/thermal collector
  • 7.5.1 Combining technologies
  • 7.5.2 The photovoltaic/thermal collector efficiency
  • 7.6 Conclusion and future trends
  • Nomenclature
  • Subscripts
  • Greek letters
  • References
  • 8 - Active solar space heating
  • 8.1 Background on active space heating
  • 8.1.1 Improvement of energy efficiency in buildings
  • 8.1.2 Changes in space heating concepts and technology applied
  • 8.1.3 Development of solar combi systems
  • 8.2 Operation of active solar space heating systems
  • 8.2.1 Basic classification of the systems
  • 8.2.2 Main components of the systems
  • 8.2.3 Heat storage as a crucial element of the system
  • 8.2.4 Modes of operation, configuration, and functions of the systems
  • 8.3 Solar hybrid systems
  • 8.3.1 Integration and complementarity of various energy sources
  • 8.3.2 Solar-assisted heat pump systems
  • 8.3.3 Small- and large-scale systems: autonomous, distributed, and centralized systems
  • 8.4 Energy efficiency of active solar space heating
  • 8.4.1 Conditions influencing energy efficiency of the systems
  • 8.4.2 Evaluation of the seasonal performance factor
  • 8.4.3 Future improvements
  • References
  • 9 - Active solar water heating systems
  • 9.1 History
  • 9.2 Overview of technologies for active solar water heating systems
  • 9.2.1 Direct (open-loop) solar water heating
  • 9.2.2 Indirect (closed-loop) solar water heating
  • 9.2.3 Drain-back systems
  • 9.2.4 Air systems
  • 9.2.5 Pool heaters
  • 9.3 Economics and energy efficiency of active solar water heating systems
  • 9.3.1 Performance improvement of basic solar water heating components
  • 9.3.1.1 Solar thermal collectors
  • Flat-plate collector
  • Evacuated-tube collector
  • Concentrating collector
  • 9.3.1.2 Heat transfer fluid
  • 9.3.1.3 Storage tank
  • 9.3.1.4 Heat exchangers
  • 9.4 Applications of active solar water heating systems: case study
  • 9.4.1 Domestic hot water
  • 9.4.2 Space-heating
  • 9.4.3 Space cooling
  • 9.4.4 Pool heating
  • 9.4.5 Commercial applications
  • 9.4.6 Industrial applications
  • 9.4.6.1 Case study
  • 9.5 Conclusions and future trends
  • References
  • Three - Solar cooling technologies
  • 10 - Photovoltaic-powered solar cooling systems
  • 10.1 Introduction
  • 10.2 Performance index
  • 10.3 Photovoltaic-powered refrigeration system
  • 10.3.1 Studies on photovoltaic-powered refrigerators
  • 10.3.2 Energy storage in a photovoltaic-powered refrigerator
  • 10.3.3 Innovative application in photovoltaic-powered refrigerators
  • 10.3.4 Photovoltaic-powered refrigerators available in the market
  • 10.4 Photovoltaic-powered air-conditioning system
  • 10.4.1 Energy performance of photovoltaic-powered air conditioners
  • 10.4.2 Economic evaluation of photovoltaic-powered air conditioner
  • 10.4.3 Commercial products of photovoltaic-powered air conditioners
  • 10.5 Conclusions
  • References
  • 11 - Solar-powered absorption cooling systems
  • 11.1 Overview
  • 11.1.1 Absorption refrigeration
  • 11.1.2 Working pair for absorption cooling
  • 11.1.3 Solar-powered absorption cooling system
  • 11.2 Low-temperature solar power-driven systems
  • 11.2.1 Single-effect water-LiBr absorption cooling system
  • 11.2.1.1 Working principle
  • 11.2.1.2 Modeling and parameters
  • 11.2.1.3 Solar-powered case
  • 11.2.2 Single-effect ammonia-water absorption cooling system
  • 11.2.2.1 Working principle
  • 11.2.2.2 Solar-powered case
  • 11.2.3 Double-lift absorption cooling system
  • 11.2.3.1 Working principle
  • 11.2.3.2 Solar-powered case
  • 11.2.4 Other configurations
  • 11.2.4.1 Double-lift ammonia-water absorption chiller
  • 11.2.4.2 Double-lift water-LiBr absorption chiller for air-cooling conditions
  • 11.3 Medium-temperature solar power-driven systems
  • 11.3.1 Double-effect water-LiBr absorption cooling system
  • 11.3.1.1 Working principle and parameters
  • 11.3.1.2 Solar-powered case
  • 11.3.2 Generator absorber heat exchange absorption cooling system
  • 11.3.2.1 Generator absorber heat exchange absorption refrigeration cycle
  • 11.3.2.2 Branched generator absorber heat exchange absorption cooling system
  • 11.3.2.3 Solar-powered case
  • 11.3.3 Other configurations
  • 11.3.3.1 Single-effect ammonia-water absorption ice-making system
  • 11.3.3.2 Diffusion-absorption cooling system
  • 11.4 Drawbacks of solar absorption cooling systems and improvement
  • 11.4.1 Drawbacks of solar absorption cooling systems
  • 11.4.1.1 Continuous working ability
  • 11.4.1.2 Variable driving temperature
  • 11.4.2 Single-effect/double-effect water-LiBr absorption cooling system
  • 11.4.2.1 Single-effect/double-effect water-LiBr absorption chiller
  • 11.4.2.2 Solar/fossil fuel-driven single-effect/double-effect absorption cooling system
  • 11.4.3 Variable-effect water-LiBr absorption cooling system
  • 11.4.3.1 Single-effect/double-lift absorption cooling system
  • 11.4.3.2 The 1.n-effect absorption refrigeration cycle
  • 11.5 Economic performance and adaptability analysis
  • 11.5.1 Case 1: comparison between solar-powered single-effect absorption cooling systems with different solar collectors
  • 11.5.2 Case 2: life-cycle assessment of solar-powered double-effect absorption cooling system
  • 11.6 Summary
  • References
  • 12 - Solar-powered adsorption cooling systems
  • 12.1 Introduction
  • 12.1.1 Fundamental principle of adsorption refrigeration
  • 12.1.2 Adsorption working pairs
  • 12.1.2.1 Physical adsorption working pairs
  • 12.1.2.2 Chemical adsorption working pairs
  • 12.1.2.3 Composite adsorption working pairs
  • 12.2 Low-temperature solar-powered adsorption systems
  • 12.2.1 Air-conditioning systems
  • 12.2.1.1 Single-stage silica gel-water adsorption chiller with heat recovery
  • 12.2.1.2 Single-stage silica gel-water adsorption chiller with heat and mass recovery
  • 12.2.1.3 Single-stage silica gel-water adsorption chiller with heat pipe combined evaporator
  • 12.2.1.4 Single-stage silica gel-water adsorption chiller with modular design
  • 12.2.1.5 Multistage silica gel-water adsorption chiller
  • 12.2.2 Ice-making systems
  • 12.2.2.1 Single-stage activated carbon-methanol adsorption ice-maker
  • 12.2.2.2 Two-stage CaCl2-ammonia/BaCl2-ammonia adsorption ice-maker
  • 12.3 Medium-temperature solar-powered adsorption systems
  • 12.3.1 Air-conditioning systems
  • 12.3.1.1 Single-stage zeolite-water adsorption chiller
  • 12.3.1.2 Cascaded adsorption refrigeration chiller with zeolite-water and activated carbon-methanol
  • 12.3.2 Ice-making systems
  • 12.3.2.1 Single-stage activated carbon-ammonia ice-maker
  • 12.3.2.2 Single-stage CaCl2-ammonia adsorption ice-maker
  • 12.3.2.3 Single-stage CaCl2/activated carbon-ammonia adsorption ice-maker
  • 12.3.2.4 Single-stage CaCl2/expanded natural graphite-ammonia adsorption ice-maker
  • 12.4 Summary
  • References
  • 13 - Review of solar-powered desiccant cooling systems
  • 13.1 Solar-powered rotary desiccant wheel cooling system
  • 13.1.1 Introduction
  • 13.1.2 Solar-powered separate rotary desiccant wheel cooling systems
  • 13.1.2.1 Basic mode of the solar-powered rotary desiccant wheel cooling system
  • 13.1.2.2 Performance indicators
  • Coefficient of performance
  • Solar fraction
  • 13.1.2.3 Solar water collector-powered systems
  • Flat plate solar collector-powered systems
  • Vacuum tube solar collector-powered system
  • 13.1.2.4 Solar air collectors
  • Solar air collector
  • Solar air collector and photovoltaic cells
  • 13.1.3 Solar-powered hybrid rotary desiccant wheel cooling systems
  • 13.1.3.1 Basic hybrid SDECS and vapor compression systems
  • 13.1.3.2 Performance indicators
  • 13.1.3.3 Hybrid SDECS and vapor compression system
  • 13.1.3.4 Other hybrid SDECS
  • 13.2 Solar-powered liquid desiccant systems
  • 13.2.1 Introduction
  • 13.2.2 Solar-powered stand-alone desiccant cooling systems
  • 13.2.2.1 Basic mode
  • 13.2.2.2 Performance index
  • 13.2.2.3 Research progress
  • Solar-regenerated liquid desiccant ventilation preconditioning system
  • Solar-powered membrane liquid desiccant air-conditioning system
  • The multistage dehumidification system
  • Other developments
  • 13.2.3 The hybrid system
  • 13.2.3.1 The vapor compression system combined with a liquid desiccant dehumidification hybrid system
  • Performance indices
  • 13.2.3.2 The vapor absorption system combined liquid desiccant dehumidification hybrid system
  • 13.2.4 The photovoltaic-electrodialysis regeneration method for liquid desiccant cooling systems
  • 13.2.4.1 Single-stage photovoltaic-electrodialysis regeneration for liquid desiccant cooling systems
  • 13.2.4.2 Double-stage photovoltaic-electrodialysis regeneration for liquid desiccant cooling systems
  • 13.2.5 Application and simulation
  • 13.3 Summary
  • Acknowledgment
  • References
  • 14 - Other types of solar-powered cooling systems
  • 14.1 Introduction
  • 14.2 Other types of solar-powered cooling systems
  • 14.2.1 Solar-driven ejector cooling technology
  • 14.2.1.1 Operation principle
  • 14.2.1.2 Development of this technology
  • 14.2.2 Solar-driven Rankine cycle
  • 14.2.2.1 Operation principle
  • 14.2.2.2 Development of this technology
  • 14.3 Conclusion
  • References
  • Four - Heat storage for solar heating and cooling applications
  • 15 - Sensible heat storage for solar heating and cooling systems
  • 15.1 Introduction
  • 15.2 Storage materials
  • 15.2.1 Types of storage material
  • 15.2.1.1 Liquid storage material
  • 15.2.1.2 Solid storage materials
  • 15.3 Classification of sensible thermal energy storage systems
  • 15.3.1 Short-term (diurnal)/long-term (seasonal) storage
  • 15.3.2 Cool/low/medium/high-temperature storage
  • 15.3.3 Active and passive storage
  • 15.4 Working principle
  • 15.5 Sensible thermal storage technologies
  • 15.5.1 Domestic hot water storage
  • 15.5.1.1 Direct/indirect storage
  • 15.5.1.2 Open-/closed-loop storage tank
  • 15.5.1.3 Pressurized storage system
  • 15.5.2 Storage methods in space-heating system
  • 15.5.2.1 Rock-bed thermal storage
  • 15.5.2.2 Solar ponds
  • 15.5.2.3 Borehole thermal energy storage system
  • 15.5.2.4 Gravel-water thermal energy storage
  • 15.5.2.5 Aquifer thermal storage system
  • 15.5.2.6 Building structure
  • 15.5.3 Solar power plant with sensible thermal energy storage
  • 15.5.4 Storage for solar-cooling system
  • 15.5.4.1 Storage concepts in vapor absorption refrigeration system
  • 15.5.4.2 Cool storage in solar photovoltaic-operated vapor compression refrigeration system
  • 15.6 Thermal performance evaluations
  • 15.6.1 Heat capacity
  • 15.6.2 Charging and discharging efficiency
  • 15.6.3 Heat loss evaluation
  • 15.6.4 Stratification performance parameters
  • 15.6.4.1 Design considerations for stratified thermal energy storage tanks
  • 15.6.4.2 Performance evaluation
  • Stratification number
  • Richardson number
  • Nomenclature and symbols
  • References
  • 16 - Latent heat storage for solar heating and cooling systems
  • 16.1 Introduction
  • 16.2 Temperature level for latent heat storage design
  • 16.3 Storage media
  • 16.3.1 Required phase change temperature for collecting temperature level
  • 16.3.2 Double-effect H2O/LiBr absorption systems
  • 16.3.3 Single-effect absorption systems
  • 16.3.4 Storage media for storage at cooling/heating application temperature level
  • 16.4 Main materials for storage (Pumpable slurries and PCM)
  • 16.4.1 Slurry properties
  • 16.4.1.1 Density
  • 16.4.1.2 Thermal conductivity
  • 16.4.1.3 Enthalpy and specific heat
  • 16.4.1.4 Dynamic viscosity
  • 16.4.2 Tetra-n-butylammonium-hydrate slurries
  • 16.4.2.1 Phase diagram
  • 16.4.2.2 Density
  • 16.4.2.3 Thermal conductivity
  • 16.4.2.4 Specific heat
  • 16.4.2.5 Latent heat
  • 16.4.2.6 Dynamic viscosity
  • 16.4.3 Carbon dioxide hydrate slurries
  • 16.4.3.1 Phase diagram
  • 16.4.3.2 Density
  • 16.4.3.3 Thermal conductivity
  • 16.4.3.4 Specific heat
  • 16.4.3.5 Latent heat
  • 16.4.3.6 Dynamic viscosity
  • 16.4.3.7 Diffusion coefficient
  • 16.4.4 Stationary PCM storage designs
  • 16.4.5 Size of heat exchangers
  • 16.4.5.1 Model assumptions
  • 16.4.5.2 Constitutive equations
  • 16.4.5.3 Conservation equations
  • 16.4.5.4 Initial and boundary conditions
  • 16.5 Examples
  • 16.6 Conclusion
  • List of symbols
  • Greek symbols
  • Subscripts
  • Abbreviations
  • References
  • 17 - Chemisorption heat storage for solar low-energy buildings
  • 17.1 Introduction
  • 17.2 Basics of chemisorption
  • 17.2.1 Basics of chemical reaction
  • 17.2.2 Solid/gas reaction
  • 17.2.3 Chemisorption used in systems
  • 17.3 Important considerations concerning application to buildings
  • 17.3.1 Where does the heat come from?
  • 17.3.2 What are the specifications of a thermal energy storage system?
  • 17.3.2.1 Chemical heat storage for space heating
  • 17.3.2.2 Chemical heat storage for domestic hot water
  • 17.3.3 What are the additional criteria?
  • 17.4 Chemical heat storage materials
  • 17.4.1 Pure salts
  • 17.4.2 Composite materials
  • 17.5 Storage reactor developments
  • 17.5.1 Closed system
  • 17.5.2 Open system
  • 17.6 Conclusions
  • List of symbols
  • Greek letters
  • Subscripts
  • Superscript
  • References
  • 18 - Thermochemical heat storage for solar heating and cooling systems
  • 18.1 Introduction
  • 18.2 Thermochemical heat storage
  • 18.2.1 Thermochemical sorption heat storage
  • 18.2.2 Thermochemical heat storage without sorption
  • 18.2.2.1 The NH3/N2/H2 chemical heat storage system
  • 18.2.2.2 The SO3/O2/SO2 chemical heat storage system
  • 18.2.2.3 The CH3OH/H2/CO chemical heat storage system
  • 18.2.2.4 The cyclohexane/benzene/hydrogen chemical heat storage system
  • 18.2.2.5 Methane re-forming chemical heat storage system
  • 18.2.2.6 The isopropanol/acetone/hydrogen chemical heat storage system
  • 18.2.2.7 The ammonium hydrogen sulfate chemical heat storage system
  • 18.2.2.8 Thermal dissociation reaction of metal oxides for chemical heat storage system
  • 18.2.2.9 Decarbonation reaction of carbonate for chemical heat storage system
  • 18.2.2.10 Dehydration reaction of hydroxide for chemical heat storage system
  • 18.2.2.11 Metal hydrides for chemical heat storage systems
  • 18.3 Summary and perspective
  • References
  • Five - Advanced applications of solar heating and cooling systems
  • 19 - Combined photovoltaic/thermal technology for building applications
  • 19.1 Introduction
  • 19.1.1 What is photovoltaic/thermal technology?
  • 19.1.2 What are the possible choices and applications?
  • 19.2 Flat plate photovoltaic/thermal systems and equipment for building applications
  • 19.2.1 Performance assessment criteria
  • 19.2.2 Air-based design
  • 19.2.3 Liquid (water)-based design
  • 19.2.4 Refrigerant-based design
  • 19.2.5 Building-integrated design
  • 19.3 Advanced system design and performance analysis
  • 19.3.1 On life-cycle analysis
  • 19.3.2 On materials selection
  • 19.3.3 On environmental impacts
  • 19.3.4 On technological advancements
  • 19.4 Final remarks
  • References
  • 20 - Future trends for solar energy use in nearly zero energy buildings
  • 20.1 Renewables in the built environment
  • 20.1.1 Strategies
  • 20.1.2 Net zero energy buildings
  • 20.1.3 Nearly zero energy buildings
  • 20.2 Solar energy potential for thermal energy production in the built environment
  • 20.2.1 General features
  • 20.2.2 Case study
  • 20.3 New trends in increasing the use of solar energy conversion systems integrated in nearly zero energy buildings
  • 20.3.1 Needs and trends
  • 20.3.2 New trends in increasing the use of solar-thermal systems integrated in nearly zero energy buildings
  • 20.3.3 Case study 1: novel flat plate ST collector for solar-thermal facades
  • 20.3.4 Case study 2: adaptive tracking to increase the output and durability of flat plate ST collectors
  • 20.3.5 Standardization
  • 20.4 Instead of conclusions
  • Acknowledgments
  • References
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • L
  • M
  • N
  • O
  • P
  • R
  • S
  • T
  • U
  • V
  • W
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

255,85 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok