Recent Developments in Polymer Macro, Micro and Nano Blends

Preparation and Characterisation
 
 
Woodhead Publishing
  • 1. Auflage
  • |
  • erschienen am 24. August 2016
  • |
  • 342 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
978-0-08-100427-2 (ISBN)
 

Recent Developments in Polymer Macro, Micro and Nano Blends: Preparation and Characterisation discusses the various types of techniques that are currently used for the characterization of polymer-based macro, micro, and nano blends. It summarizes recent technical research accomplishments, emphasizing a broad range of characterization methods.

In addition, the book discusses preparation methods and applications for various types of polymer-based macro, micro, and nano blends. Chapters include thermoplastic-based polymer & nano blends, applications of rubber based and thermoplastic blends, micro/nanostructures polymer blends containing block copolymers, advances in polymer-inorganic hybrids as membrane materials, synthesis of polymer/inorganic hybrids through heterophase polymerizations, nanoporous polymer foams from nanostructured polymer blends, and natural polymeric biodegradable nano blends for protein delivery.


  • Describes the techniques pertaining to a kind (or small number) of blends, showing specific examples of their applications
  • Covers micro, macro, and nano polymer blends
  • Contains contributions from leading experts in the field
  • Englisch
  • Cambridge
  • |
  • Großbritannien
Elsevier Science
  • 116,26 MB
978-0-08-100427-2 (9780081004272)
0081004273 (0081004273)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Recent Developments in Polymer Macro,Micro and Nano Blends
  • Related titles
  • Recent Developments in Polymer Macro, Micro and Nano Blends: Preparation and Characterization
  • Copyright
  • Contents
  • List of contributors
  • Editors' biographies
  • 1 - Polymer blends: state of art
  • 1.1 General background on polymer blend/nanofiller composites
  • 1.2 Nanoparticles of the polymer composites
  • 1.3 Functionalized polymer with nanoparticles
  • 1.4 Composite material
  • 1.5 Preparation of polymer blend/nanofiller composites
  • 1.6 Characterization of polymer blend/nanocomposites
  • 1.7 Applications of polymer blend/nanocomposites
  • References
  • 2 - Thermoplastic-based nanoblends: preparation and characterizations
  • 2.1 Introduction
  • 2.2 Thermoplastic-based nanoblends
  • 2.2.1 Solution casting [131]
  • 2.2.2 Brabender mixing
  • 2.2.3 Melt-mixing process
  • 2.2.4 Extrusion molding
  • 2.2.5 Elongation flow mixer
  • 2.2.6 High-shear mixing
  • 2.3 Characterizations of thermoplastic-based nanoblends
  • 2.3.1 Tensile testing
  • 2.3.2 Differential scanning calorimetery
  • 2.3.3 Dynamical mechanical analysis (DMA)
  • 2.3.4 Thermogravimetric analysis
  • 2.3.5 Scanning electron microscopy
  • 2.3.6 Transmission electron microscopy
  • 2.3.7 Atomic force microscopy
  • 2.3.8 Fourier transform infrared spectroscopy
  • 2.3.9 Nuclear magnetic resonance spectroscopy
  • 2.3.10 Raman spectroscopy
  • 2.3.11 Ultraviolet-visible spectroscopy
  • 2.3.12 Electron paramagnetic resonance or electron spin resonance spectroscopy
  • 2.3.13 X-ray diffraction analysis
  • 2.3.14 X-ray scattering and wide-angle X-ray scattering analysis
  • 2.3.15 Neutronscattering
  • 2.3.16 Rheology measurements
  • 2.4 Interface modification of nanoblends
  • 2.5 Conclusion
  • References
  • 3 - Hybrid composites using natural polymer blends and carbon nanostructures: preparation, characterization, and applications
  • 3.1 Introduction
  • 3.1.1 Natural polymer blends
  • 3.1.2 Collagen
  • 3.1.3 Blends of collagen with other polymers
  • 3.1.4 Carbon-based polymer blends
  • 3.1.5 Collagen-nanotube blends
  • 3.2 Formation of conducting nanocomposite films using collagen-chitosan blends and nanocarbons
  • 3.2.1 Preparation of nanobiocomposite films
  • 3.2.2 Characteristics of collagen/guar gum/carbon nanotube hybrid films
  • 3.3 Formation of conducting nanocomposite films from collagen and carbon nanotubes
  • 3.3.1 Preparation of graphitic carbon from animal skin wastes
  • 3.3.2 Preparation of multifunctional nanobiocomposite films
  • 3.3.3 Characteristics of the developed nanobiocomposite films
  • 3.4 Conclusions
  • References
  • 4 - Applications of rubber-based blends
  • 4.1 Introduction
  • 4.1.1 Medical device applications
  • 4.1.2 Biomedical applications
  • 4.1.3 Packaging applications
  • 4.1.4 Military applications
  • 4.1.5 Tire industry
  • 4.1.6 Aerospace applications
  • 4.1.7 Structural applications
  • 4.1.8 Other applications: recycling trend
  • 4.2 Conclusion
  • References
  • 5 - Applications of thermoplastic-based blends
  • 5.1 Introduction
  • 5.1.1 Medical device applications
  • 5.1.1.1 Additional product lines for sophisticated applications
  • Medical instruments and devices
  • Medical tubing
  • Elastomer sheets and films
  • 5.1.2 Biomedical applications
  • 5.1.2.1 Polymers for heart valves
  • 5.1.2.2 Tubes for nerve regeneration
  • 5.1.2.3 Work-related lung ailments
  • 5.1.2.4 Composites for feet and rifles
  • 5.1.2.5 Fibers eliminate scars
  • 5.1.2.6 National Toxicology Program asserts DEHP risk
  • 5.1.2.7 Greenpeace statement on vinyl
  • 5.1.2.8 Protecting artificial joints
  • 5.1.2.9 Composite wound dressing
  • 5.1.2.10 Rapid prosthetics
  • 5.1.2.11 Plastic blood vessels
  • 5.1.2.12 Artificial muscles
  • 5.1.2.13 Burro and cow prosthesis
  • 5.1.2.14 Ceramic joints
  • 5.1.2.15 Waterproof casts
  • 5.1.2.16 Artificial fingers
  • 5.1.2.17 Halo device
  • 5.1.2.18 Cranial implants
  • 5.1.2.19 Artificial muscles dispense medicine
  • 5.1.2.20 Polymers aid bone healing
  • 5.1.2.21 Prosthetic workshop
  • 5.1.2.22 Improvements in biomaterials
  • 5.1.3 Packaging applications
  • 5.1.3.1 The lightest packaging material
  • 5.1.3.2 Food conservation and preservation
  • 5.1.3.3 Convenient and innovative
  • 5.1.3.4 Safe and hygienic
  • 5.1.4 Military application
  • 5.1.4.1 Early involvement
  • 5.1.4.2 Material knowledge
  • 5.1.4.3 Assembly expertise
  • 5.1.4.4 Rapid tooling capability
  • 5.1.5 Aerospace applications
  • 5.1.5.1 Aircraft components
  • 5.1.5.2 Material and parts
  • 5.1.5.3 Equipment and systems
  • 5.1.5.4 Cabin interior
  • 5.1.5.5 Propulsion systems
  • 5.1.6 Structural applications
  • 5.2 Conclusion
  • Acknowledgments
  • References
  • 6 - Micro-/nanostructured polymer blends containing block copolymers
  • 6.1 General introduction
  • 6.2 Nanostructured materials from block copolymers
  • 6.3 Nanostructures in block copolymer blends
  • 6.3.1 Block copolymers in polymer blends: general issues
  • 6.3.1.1 Microphase separation in polymer blends: critical micelle concentration
  • 6.3.1.2 Block copolymers in blends: homopolymer/block copolymer blends
  • 6.3.2 Block copolymer blends: structuration at surfaces
  • 6.3.3 Blends containing block copolymers in thin films
  • 6.3.4 Structuration of blends on patterned substrates
  • 6.3.5 Water condensation to induce phase separation in block copolymer blends
  • 6.3.6 Improving the block copolymer order in blends: annealing
  • 6.4 Ordering in block copolymer/block copolymer blends
  • 6.5 Micro- and nanostructured block copolymer blends
  • 6.6 Few selected application of block copolymer-based blends
  • 6.6.1 Patterning with block copolymer blends
  • 6.6.2 Antireflective coatings
  • 6.6.3 Nanostructured hydrogels
  • 6.6.4 Stimuli-responsive interfaces
  • 6.7 Conclusions
  • Acknowledgments
  • References
  • 7 - Advances in polymer-inorganic hybrids as membrane materials
  • 7.1 Introduction
  • 7.1.1 Membrane technology-state-of-the-art
  • 7.1.2 Fundamental considerations for the development of advanced membranes
  • 7.1.2.1 General material requirements in various applications and the challenges
  • 7.1.2.2 Strategies to overcome the upper bounds
  • 7.1.3 Recent progress in polymer-inorganic hybrid membranes
  • 7.2 Preparation of polymer-inorganic hybrid membranes
  • 7.2.1 Classification of hybrid membranes
  • 7.2.1.1 Mixed matrix membranes
  • 7.2.1.2 Nanocomposite membranes
  • 7.2.2 Selection of membrane materials
  • 7.2.2.1 Polymer phase
  • 7.2.2.2 Inorganic phase
  • 7.2.3 Interfacial morphology
  • 7.2.4 Fabrication techniques
  • 7.2.4.1 Solution blending
  • 7.2.4.2 Surface modification
  • 7.2.4.3 Interfacial polymerization
  • 7.2.4.4 Sol-gel
  • 7.3 Transport mechanisms
  • 7.3.1 Nonporous membranes
  • 7.3.1.1 Solution-diffusion
  • 7.3.1.2 Facilitated transport
  • 7.3.2 Porous membranes
  • 7.3.3 Transport in polymer-inorganic hybrid membranes
  • 7.3.3.1 Maxwell's model
  • 7.3.3.2 Free volume increase mechanism
  • 7.3.3.3 Solubility increase mechanism
  • 7.4 Characterization of polymer-inorganic hybrid membranes
  • 7.4.1 Morphology
  • 7.4.2 Mechanical properties
  • 7.4.3 Thermal properties
  • 7.5 Applications
  • 7.5.1 Hybrid membranes for gas separation
  • 7.5.1.1 Hybrid membranes for CO2 separation-an example
  • 7.5.2 Hybrid membranes for liquid separation
  • 7.5.2.1 Desalination
  • 7.5.2.2 Organic solvent nanofiltration
  • 7.6 Conclusions and future development
  • References
  • 8 - Synthesis of polymer/inorganic hybrids through heterophase polymerizations
  • 8.1 General introduction
  • 8.2 Heterophase polymerization processes
  • 8.2.1 Suspension polymerization
  • 8.2.2 Emulsion polymerization
  • 8.2.3 Miniemulsion polymerization
  • 8.3 Polymer/magnetic nanoparticle-based nanocomposites
  • 8.4 Polymer/clay-based nanocomposites
  • 8.4.1 Composites structures
  • 8.4.2 Nanocomposite preparation
  • 8.4.2.1 Intercalation-adsorption or solution intercalation
  • 8.4.2.2 In situ intercalative polymerization
  • 8.4.2.3 Melt intercalation
  • 8.4.2.4 Template synthesis
  • 8.5 Morphology characterization techniques
  • 8.5.1 Scanning electron microscopy
  • 8.5.2 Transmission electron microscopy
  • 8.5.3 Scanning probe microscopy
  • 8.6 Conclusion
  • References
  • 9 - Nanoporous polymer foams from nanostructured polymer blends: preparation, characterization, and properties
  • 9.1 Introduction
  • 9.1.1 Microporous and nanoporous polymer foams
  • 9.1.2 Nanoporous polymer foams
  • 9.1.3 Nanostructured polymers and blends or polyphasic polymers as precursors of nano/microporous and cellular organic polymers
  • 9.1.3.1 Brief summary of pore precursors in nonorganic materials
  • 9.1.3.2 State of the art of pore precursors and structuration in organic polymers
  • Nonfoaming processes
  • Foaming processes
  • 9.2 Nanostructured solid polymer blends for the potential production of micro- and nanoporous materials by a foaming process: th...
  • 9.2.1 Desirable predicted features of nanostructured polymer blends intended for gas foaming processes (by Classical Nucleation ...
  • 9.2.2 Nanostructured polymer blends morphologies used in gas foaming processes
  • 9.3 Nano- and microporous structures obtained by gas foaming of nanostructured polymer blends: characterization and evidences of...
  • 9.3.1 Characterization of the porous structures obtained by foaming of nanostructured polymer blends
  • 9.3.2 Evidences of the foaming mechanisms
  • 9.4 Properties and applications of nanoporous foamed materials obtained from nanostructured polymer blends
  • 9.5 Conclusion and perspectives
  • References
  • 10 - Natural polymeric biodegradable nanoblend for macromolecules delivery
  • 10.1 Introduction
  • 10.2 Nanotechnology
  • 10.2.1 Method of preparation
  • 10.2.1.1 Coacervation or ionic gelation of hydrophilic polymers
  • 10.2.1.2 Interfacial polymerization
  • 10.2.1.3 Emulsification-solvent evaporation
  • 10.2.1.4 Salting out
  • 10.2.2 Types of polymeric nanoparticulate/nanoblend systems
  • 10.2.2.1 Polymeric nanoparticle/nanoblend systems
  • 10.2.2.2 Polymeric micelle systems
  • 10.3 Natural polymers
  • 10.3.1 Alginate
  • 10.3.1.1 Sources
  • 10.3.1.2 Chemical structure
  • 10.3.1.3 Properties
  • 10.3.1.4 Applications of alginate in macromolecules
  • Tissue engineering
  • Drug delivery
  • Treatment of arthritis
  • Oral insulin delivery
  • Vaccine delivery
  • Gene delivery
  • 10.3.2 Chitosan
  • 10.3.2.1 Chemical structure
  • 10.3.2.2 Properties
  • 10.3.2.3 Applications of chitosan in macromolecules delivery
  • Pulmonary and nasal delivery
  • Antitumor immunity
  • Gene delivery
  • Oral delivery
  • Insulin delivery
  • Brain-targeted delivery
  • Anticancer delivery
  • 10.3.3 Gelatin
  • 10.3.3.1 Chemical structure
  • 10.3.3.2 Properties
  • 10.3.3.3 Applications of gelatin in macromolecules delivery
  • Vaccine and protein delivery
  • Tissue engineering
  • Ocular delivery
  • Gene delivery
  • Tumor-targeted delivery
  • 10.4 Conclusion
  • References
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • X
  • Z
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

214,20 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok