Towards 5G

Applications, Requirements and Candidate Technologies
 
 
John Wiley & Sons Inc (Verlag)
  • erschienen am 4. November 2016
  • |
  • 472 Seiten
 
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-1-118-97989-1 (ISBN)
 
This book brings together a group of visionaries and technical experts from academia to industry to discuss the applications and technologies that will comprise the next set of cellular advancements (5G). In particular, the authors explore usages for future 5G communications, key metrics for these usages with their target requirements, and network architectures and enabling technologies to meet 5G requirements. The objective is to provide a comprehensive guide on the emerging trends in mobile applications, and the challenges of supporting such applications with 4G technologies.
1. Auflage
  • Englisch
  • New York
  • |
  • Großbritannien
  • Für Beruf und Forschung
  • 13,13 MB
978-1-118-97989-1 (9781118979891)
1118979893 (1118979893)
weitere Ausgaben werden ermittelt
Rath Vannithamby, Senior Research Scientist at Intel Corporation, Oregon, USA
Rath Vannithamby received his PhD degree in EE from the University of Toronto. He leads and manages a team responsible for 4G/5G cellular research in Intel Labs. Prior to joining Intel, he was a researcher at Ericsson responsible for 3G research. Dr. Vannithamby is a Senior Member of IEEE. He has published over 50 scientific articles and has over 120 patents granted/pending. His research interests are in the area of 4G/5G broadband mobile networks, energy efficiency, QoS for mobile internet applications, cross-layer techniques, cognitive radio, and machine-to-machine communications.
Shilpa Talwar, Principal Engineer at Intel Corporation, California, USA
Shilpa Talwar leads a small research team focused on advanced network topologies for improving the capacity and service quality of cellular networks. Her research interests include heterogeneous networks, multi-radio interworking, device to device communications, and advanced MIMO and interference mitigation techniques. While at Intel, she has contributed to IEEE and 3GPP standard bodies, including an IEEE wide tutorial on Future Wireless Networks with support of many industry partners, which led to formation of multiple study groups in IEEE 802.16, and the 802.16p standard. She is currently coordinating an effort on 5G technologies with several leading universities and industry partners. Shilpa graduated from Stanford University in 1996 with a Ph.D. in Applied mathematics and an M.S. in electrical engineering. She is the author of 60+ technical publications and patents.
1 - Title Page [Seite 5]
2 - Copyright Page [Seite 6]
3 - Contents [Seite 7]
4 - List of Contributors [Seite 17]
5 - List of Acronyms [Seite 21]
6 - About the Companion Website [Seite 33]
7 - Part I Overview of 5G [Seite 35]
7.1 - Chapter 1 Introduction [Seite 37]
7.1.1 - 1.1 Evolution of Cellular Systems through the Generations [Seite 37]
7.1.2 - 1.2 Moving Towards 5G [Seite 38]
7.1.3 - 1.3 5G Networks and Devices [Seite 39]
7.1.4 - 1.4 Outline of the Book [Seite 41]
7.1.5 - References [Seite 42]
7.2 - Chapter 2 5G Requirements [Seite 43]
7.2.1 - 2.1 Introduction [Seite 43]
7.2.2 - 2.2 Emerging Trends in Mobile Applications and Services [Seite 44]
7.2.2.1 - 2.2.1 New Types of Mobile Device [Seite 44]
7.2.2.2 - 2.2.2 Video Streaming and Download Services [Seite 45]
7.2.2.3 - 2.2.3 Machine-to-machine Services [Seite 45]
7.2.2.4 - 2.2.4 Cloud Services [Seite 46]
7.2.2.5 - 2.2.5 Context-based and Location-based Services [Seite 47]
7.2.2.6 - 2.2.6 Broadcast Services [Seite 48]
7.2.2.7 - 2.2.7 Summary [Seite 48]
7.2.3 - 2.3 General Requirements [Seite 49]
7.2.3.1 - 2.3.1 Capacity Requirements [Seite 49]
7.2.3.2 - 2.3.2 User Data-rate Requirements [Seite 51]
7.2.3.3 - 2.3.3 Latency Requirements [Seite 51]
7.2.3.3.1 - 2.3.3.1 User-plane Latency [Seite 52]
7.2.3.3.2 - 2.3.3.2 Control-plane Latency [Seite 52]
7.2.3.4 - 2.3.4 Massive Device Connectivity [Seite 53]
7.2.3.5 - 2.3.5 Energy Saving and Robustness against Emergencies [Seite 54]
7.2.3.6 - 2.3.6 Summary [Seite 55]
7.2.4 - References [Seite 55]
7.3 - Chapter 3 Collaborative 5G Research within the EU Framework of funded research [Seite 57]
7.3.1 - 3.1 Rationale for 5G Research and the EU's Motivation [Seite 57]
7.3.2 - 3.2 EU Research [Seite 59]
7.3.2.1 - 3.2.1 History [Seite 59]
7.3.2.2 - 3.2.2 EU Bodies, Structure, Roles, and Project Creation [Seite 61]
7.3.2.3 - 3.2.3 Project Creation and Operation [Seite 62]
7.3.2.3.1 - 3.2.3.1 Project Creation [Seite 63]
7.3.2.3.2 - 3.2.3.2 Project Operation [Seite 64]
7.3.2.4 - 3.2.4 Details of the FP8 Program [Seite 64]
7.3.2.5 - 3.2.5 European Technology Platforms and Public-Private Partnerships [Seite 65]
7.3.2.6 - 3.2.6 Other Funded Research [Seite 66]
7.3.3 - References [Seite 67]
7.4 - Chapter 4 5G: Transforming the User Wireless Experience [Seite 68]
7.4.1 - 4.1 Introduction [Seite 68]
7.4.2 - 4.2 Intel's Vision of 5G Technologies [Seite 68]
7.4.2.1 - 4.2.1 Enabling New Spectrum [Seite 69]
7.4.2.2 - 4.2.2 Increasing Spectrum Efficiency [Seite 70]
7.4.2.3 - 4.2.3 Exploiting Multiple Radio Access Technologies [Seite 71]
7.4.2.4 - 4.2.4 Awareness of Application-specific Service Quality [Seite 72]
7.4.2.5 - 4.2.5 Exploiting Context Awareness [Seite 72]
7.4.2.6 - 4.2.6 Improving Device Power Efficiency [Seite 73]
7.4.3 - 4.3 Intel Strategic Research Alliance on 5G [Seite 74]
7.4.4 - 4.4 ISRA 5G Technical Objectives and Goals [Seite 74]
7.4.4.1 - 4.4.1 Goal 1: Network Capacity [Seite 75]
7.4.4.2 - 4.4.2 Goal 2: Uniform Connectivity Experience [Seite 75]
7.4.4.3 - 4.4.3 Goal 3: Service Quality and User Experience [Seite 76]
7.4.5 - 4.5 ISRA 5G Project Summaries [Seite 76]
7.4.5.1 - 4.5.1 Higher, Denser, Wilder: Massively Broadband and Adaptive Wireless for 5th Generation Wireless Communications [Seite 76]
7.4.5.2 - 4.5.2 Fundamental Limits, Self-organization, and Context Awareness for Integrated Cellular and D2D Architectures [Seite 78]
7.4.5.3 - 4.5.3 LAWS: Large Arrays and Wide Spectrum [Seite 79]
7.4.5.4 - 4.5.4 A System View of Interference Management: Radio Circuits, PHY Mechanisms, and Protocol Designs [Seite 80]
7.4.5.5 - 4.5.5 Dynamic Cloud Services Spectrum Sharing Algorithms and Mechanisms for B4G Networks [Seite 81]
7.4.5.6 - 4.5.6 Fundamentals of Spectrum Sharing in Device-to-Device and Heterogeneous Communication Networks [Seite 82]
7.4.5.7 - 4.5.7 Structured Sharing of Network and Compute Resources in a Community of Devices [Seite 82]
7.4.5.8 - 4.5.8 A Unified Framework for Enabling Energy-efficient Mobile Internet Apps and Energy-efficient Cloud Offloading [Seite 83]
7.4.6 - References [Seite 84]
8 - Part II Candidate Technologies - Evolutionary [Seite 87]
8.1 - Chapter 5 Towards Green and Soft [Seite 89]
8.1.1 - 5.1 Chapter Overview [Seite 89]
8.1.2 - 5.2 Efforts on Green and Soft 5G Networks [Seite 90]
8.1.3 - 5.3 Rethink Shannon: EE and SE Co-design for a Green Network [Seite 91]
8.1.3.1 - 5.3.1 EE and SE Co-design Fundamentals [Seite 91]
8.1.3.2 - 5.3.2 5G Candidate Technologies with EE-SE Co-design [Seite 95]
8.1.3.2.1 - 5.3.2.1 Hybrid BF for LSAS [Seite 95]
8.1.3.2.2 - 5.3.2.2 NOMA with EE-SE Co-design [Seite 99]
8.1.4 - 5.4 "No More Cell" for a Green and Soft Network [Seite 101]
8.1.4.1 - 5.4.1 C-RAN: An Enabling Element for 5G [Seite 101]
8.1.4.2 - 5.4.2 Rethink Signaling and Control for "No More Cell" [Seite 104]
8.1.4.3 - 5.4.3 Service Aggregator: to Accommodate Trillions of Nodes in 5G [Seite 107]
8.1.4.3.1 - 5.4.3.1 Aggregation of Packet Data from Multiple MTC Devices [Seite 108]
8.1.4.3.2 - 5.4.3.2 Two Relay Modes of the Aggregators [Seite 109]
8.1.5 - 5.5 Summary [Seite 109]
8.1.6 - Acknowledgments [Seite 110]
8.1.7 - References [Seite 110]
8.2 - Chapter 6 Proactive Caching in 5G Small Cell Networks [Seite 112]
8.2.1 - 6.1 Small Cell Networks: Past, Present, and Future Trends [Seite 112]
8.2.2 - 6.2 Cache-enabled Proactive Small Cell Networks [Seite 114]
8.2.3 - 6.3 System Model [Seite 115]
8.2.4 - 6.4 Proactive Caching at Base Stations [Seite 116]
8.2.4.1 - 6.4.1 Numerical Results and Discussions [Seite 117]
8.2.5 - 6.5 Proactive Caching at User Terminals [Seite 119]
8.2.5.1 - 6.5.1 Numerical Results and Discussions [Seite 122]
8.2.6 - 6.6 Related Work and Research Directions [Seite 124]
8.2.6.1 - 6.6.1 Proactive Caching and Content Popularity Estimation [Seite 126]
8.2.6.2 - 6.6.2 Approximation Algorithms [Seite 126]
8.2.6.3 - 6.6.3 Coded Caching Gains [Seite 127]
8.2.6.4 - 6.6.4 Joint Designs [Seite 128]
8.2.6.5 - 6.6.5 Mobility [Seite 128]
8.2.6.6 - 6.6.6 Energy Consumption [Seite 128]
8.2.6.7 - 6.6.7 Deployment Aspects [Seite 128]
8.2.7 - 6.7 Conclusions [Seite 129]
8.2.8 - Acknowledgments [Seite 129]
8.2.9 - References [Seite 129]
8.3 - Chapter 7 Modeling Multi-Radio Coordination and Integration in Converged Heterogeneous Networks [Seite 133]
8.3.1 - 7.1 Enabling Technologies for Multi-Radio Heterogeneous Networks [Seite 133]
8.3.1.1 - 7.1.1 Understanding Challenges in Mobile Wireless Networking [Seite 133]
8.3.1.2 - 7.1.2 5G Technology Trends: Heterogeneous Networks [Seite 135]
8.3.1.3 - 7.1.3 5G Technology Trends: Direct Communications [Seite 137]
8.3.1.4 - 7.1.4 Focus and Contributions of our 5G Research [Seite 138]
8.3.2 - 7.2 Comprehensive Methodology for Space-Time Network Analysis [Seite 139]
8.3.2.1 - 7.2.1 Capabilities of the Proposed Mathematical Approach [Seite 139]
8.3.2.2 - 7.2.2 Proposed Taxonomy for HetNets [Seite 140]
8.3.2.3 - 7.2.3 General Assumptions of the Model [Seite 142]
8.3.2.4 - 7.2.4 The HetNet Operation Considered [Seite 146]
8.3.3 - 7.3 Analysis of Random Dynamic HetNets [Seite 148]
8.3.3.1 - 7.3.1 Core Stochastic Model [Seite 148]
8.3.3.1.1 - 7.3.1.1 Tier Types I and II Analysis [Seite 149]
8.3.3.1.2 - 7.3.1.2 Tier Type III Analysis [Seite 149]
8.3.3.2 - 7.3.2 Calculating the Steady-State Distribution [Seite 150]
8.3.3.3 - 7.3.3 Characterizing Transitions for Important HetNet Examples [Seite 152]
8.3.3.3.1 - 7.3.3.1 Tier Type I Transitions [Seite 152]
8.3.3.3.2 - 7.3.3.2 Tier Type II Transitions [Seite 153]
8.3.3.3.3 - 7.3.3.3 Tier Type III Transitions [Seite 154]
8.3.4 - 7.4 Quantifying Performance with System-level Evaluations [Seite 155]
8.3.4.1 - 7.4.1 Features of our 5G System-level Simulator [Seite 155]
8.3.4.2 - 7.4.2 Discussing Representative Numerical Results [Seite 157]
8.3.5 - 7.5 Summary and Conclusions [Seite 160]
8.3.6 - Acknowledgments [Seite 160]
8.3.7 - References [Seite 160]
8.4 - Chapter 8 Distributed Resource Allocation in 5G Cellular Networks [Seite 163]
8.4.1 - 8.1 Introduction [Seite 163]
8.4.2 - 8.2 Multi-tier 5G Cellular: Overview and Challenges [Seite 166]
8.4.2.1 - 8.2.1 Overview [Seite 166]
8.4.2.2 - 8.2.2 Challenges in Radio Resource Management for Multi-tier Cellular Systems [Seite 166]
8.4.3 - 8.3 System Model [Seite 169]
8.4.3.1 - 8.3.1 Network Model and Assumptions [Seite 169]
8.4.3.2 - 8.3.2 Achievable Data Rate [Seite 170]
8.4.3.3 - 8.3.3 Formulation of the Resource Allocation Problem [Seite 171]
8.4.4 - 8.4 Resource Allocation using Stable Matching [Seite 173]
8.4.4.1 - 8.4.1 Concept of Matching [Seite 173]
8.4.4.2 - 8.4.2 Utility Function and Preference Profile [Seite 174]
8.4.4.3 - 8.4.3 Algorithm Development [Seite 174]
8.4.4.4 - 8.4.4 Stability, Optimality, and Complexity of the Solution [Seite 176]
8.4.4.4.1 - 8.4.4.1 Stability [Seite 176]
8.4.4.4.2 - 8.4.4.2 Optimality [Seite 176]
8.4.4.4.3 - 8.4.4.3 Complexity [Seite 177]
8.4.5 - 8.5 Message-passing Approach for Resource Allocation [Seite 177]
8.4.5.1 - 8.5.1 Overview of the MP Scheme [Seite 178]
8.4.5.2 - 8.5.2 Reformulation of the Resource Allocation Problem Utilizing the MP Approach [Seite 178]
8.4.5.3 - 8.5.3 Effective Implementation of MP Scheme in a Practical Heterogeneous Network [Seite 180]
8.4.5.4 - 8.5.4 Algorithm Development [Seite 182]
8.4.5.5 - 8.5.5 Convergence, Optimality, and Complexity of the Solution [Seite 183]
8.4.5.5.1 - 8.5.5.1 Convergence and Optimality [Seite 183]
8.4.5.5.2 - 8.5.5.2 Complexity [Seite 185]
8.4.6 - 8.6 Auction-based Resource Allocation [Seite 185]
8.4.6.1 - 8.6.1 Overview of the Auction Approach [Seite 185]
8.4.6.2 - 8.6.2 Auction for Radio Resource Allocation [Seite 186]
8.4.6.2.1 - 8.6.2.1 Cost Function [Seite 187]
8.4.6.2.2 - 8.6.2.2 Update of Cost and Bidder Information [Seite 187]
8.4.6.3 - 8.6.3 Algorithm Development [Seite 188]
8.4.6.4 - 8.6.4 Convergence, Complexity, and Optimality of the Auction Approach [Seite 189]
8.4.6.4.1 - 8.6.4.1 Convergence and Complexity [Seite 189]
8.4.6.4.2 - 8.6.4.2 Optimality [Seite 190]
8.4.7 - 8.7 Qualitative Comparison of the Resource Allocation Schemes [Seite 191]
8.4.8 - 8.8 Summary and Conclusion [Seite 191]
8.4.9 - References [Seite 193]
8.4.10 - Additional Reading [Seite 194]
8.5 - Chapter 9 Device-to-Device Communications [Seite 196]
8.5.1 - 9.1 Introduction and Motivation [Seite 196]
8.5.2 - 9.2 Propagation Channels [Seite 197]
8.5.2.1 - 9.2.1 Pathloss [Seite 198]
8.5.2.2 - 9.2.2 Delay Dispersion [Seite 199]
8.5.2.3 - 9.2.3 Temporal Variations [Seite 199]
8.5.3 - 9.3 Neighbor Discovery and Channel Estimation [Seite 200]
8.5.3.1 - 9.3.1 Neighbor Discovery [Seite 200]
8.5.3.2 - 9.3.2 Channel Estimation [Seite 202]
8.5.4 - 9.4 Mode Selection and Resource Allocation [Seite 204]
8.5.4.1 - 9.4.1 Mode Selection [Seite 204]
8.5.4.2 - 9.4.2 Resource Allocation [Seite 206]
8.5.5 - 9.5 Scheduling [Seite 209]
8.5.5.1 - 9.5.1 In-band D2D [Seite 209]
8.5.5.2 - 9.5.2 Out-of-band D2D [Seite 210]
8.5.5.3 - 9.5.3 FlashLinQ and ITLinQ [Seite 211]
8.5.6 - 9.6 Multi-hop D2D [Seite 214]
8.5.7 - 9.7 Standardization [Seite 217]
8.5.8 - 9.8 Applications [Seite 218]
8.5.8.1 - 9.8.1 Content Distribution in Social Networks [Seite 218]
8.5.8.2 - 9.8.2 Video Distribution [Seite 218]
8.5.8.3 - 9.8.3 Roadside Infostations [Seite 219]
8.5.8.4 - 9.8.4 Emergency Communications [Seite 219]
8.5.8.5 - 9.8.5 Distributed Storage Systems [Seite 220]
8.5.8.6 - 9.8.6 Smart Grids [Seite 220]
8.5.9 - 9.9 D2D for Video [Seite 220]
8.5.9.1 - 9.9.1 Random Caching and Unicasting [Seite 221]
8.5.9.2 - 9.9.2 Coded Caching and Multicasting [Seite 222]
8.5.9.3 - 9.9.3 Simulation Results [Seite 223]
8.5.10 - 9.10 Conclusions [Seite 225]
8.5.11 - Acknowledgments [Seite 225]
8.5.12 - References [Seite 225]
8.6 - Chapter 10 Energy-efficient Wireless OFDMA Networks [Seite 233]
8.6.1 - 10.1 Overview [Seite 233]
8.6.2 - 10.2 Energy Efficiency and Energy-efficient Wireless Networks [Seite 234]
8.6.3 - 10.3 Energy Efficiency and Spectral Efficiency Tradeoff in OFDMA [Seite 235]
8.6.3.1 - 10.3.1 Fundamentals of the EE-SE Relationship [Seite 237]
8.6.3.2 - 10.3.2 Impacts of System Parameters on the EE-SE Tradeoff [Seite 239]
8.6.4 - 10.4 Energy Efficiency, Power, and Delay Tradeoff in OFDMA [Seite 242]
8.6.4.1 - 10.4.1 Relationship between EE and Transmit Power [Seite 245]
8.6.4.2 - 10.4.2 EE and Delay Tradeoff [Seite 246]
8.6.5 - 10.5 Energy-efficient Resource Allocation for Downlink OFDMA [Seite 246]
8.6.5.1 - 10.5.1 Optimal Energy-efficient Resource Allocation [Seite 248]
8.6.5.2 - 10.5.2 Low-complexity Suboptimal Energy-efficient Resource Allocation [Seite 248]
8.6.6 - 10.6 Energy-efficient Resource Allocation for Uplink OFDMA [Seite 251]
8.6.6.1 - 10.6.1 Optimal Energy-efficient Resource Allocation [Seite 252]
8.6.6.2 - 10.6.2 Low-complexity Suboptimal Energy-efficient Resource Allocation [Seite 252]
8.6.7 - 10.7 Concluding Remarks [Seite 253]
8.6.8 - References [Seite 254]
8.7 - Chapter 11 Advanced Multiple-access and MIMO Techniques [Seite 256]
8.7.1 - 11.1 Introduction [Seite 256]
8.7.2 - 11.2 Non-orthogonal Multiple Access [Seite 259]
8.7.2.1 - 11.2.1 Concept [Seite 259]
8.7.2.1.1 - 11.2.1.1 Comparison with Orthogonal User Multiplexing [Seite 260]
8.7.2.1.2 - 11.2.1.2 Motivations and Benefits of NOMA [Seite 261]
8.7.2.2 - 11.2.2 Link-level Considerations [Seite 262]
8.7.2.2.1 - 11.2.3.1 NOMA Signaling Overhead [Seite 267]
8.7.2.2.2 - 11.2.3.2 Performance in Low- and High-Mobility Scenarios [Seite 269]
8.7.2.2.3 - 11.2.3.3 Combination of NOMA and MIMO [Seite 269]
8.7.2.3 - 11.2.3 System-level Considerations [Seite 265]
8.7.3 - 11.3 Smart Vertical MIMO [Seite 272]
8.7.3.1 - 11.3.1 Grouping of Antenna Elements for 3D MIMO [Seite 272]
8.7.3.2 - 11.3.2 Adaptive Grouping of Antenna Elements using SV-MIMO [Seite 274]
8.7.3.3 - 11.3.3 Performance Evaluation and Field Experiments [Seite 276]
8.7.4 - 11.4 Conclusion [Seite 281]
8.7.5 - References [Seite 282]
8.8 - Chapter 12 M2M Communications [Seite 284]
8.8.1 - 12.1 Chapter Overview [Seite 284]
8.8.2 - 12.2 M2M Communications [Seite 284]
8.8.3 - 12.3 LTE Evolution for M2M [Seite 287]
8.8.3.1 - 12.3.1 LTE Features for M2M [Seite 288]
8.8.3.1.1 - 12.3.1.1 eMTC [Seite 292]
8.8.3.1.2 - 12.3.1.2 Narrowband Internet of Things [Seite 301]
8.8.3.2 - 12.3.2 Further Enhancements [Seite 302]
8.8.4 - 12.4 5G for M2M Communications [Seite 304]
8.8.4.1 - 12.4.1 Coverage [Seite 306]
8.8.4.2 - 12.4.2 Latency [Seite 307]
8.8.4.3 - 12.4.3 Capacity [Seite 307]
8.8.5 - 12.5 Conclusion [Seite 307]
8.8.6 - References [Seite 308]
8.9 - Chapter 13 Low-latency Radio-interface Perspectives for Small-cell 5G Networks [Seite 309]
8.9.1 - 13.1 Introduction to Low-latency Radio-interface Design [Seite 309]
8.9.2 - 13.2 Small-cell Channel Environment Considerations and Expected Traffic [Seite 311]
8.9.2.1 - 13.2.1 Centimeter-wave Channel Models [Seite 312]
8.9.2.2 - 13.2.2 Millimeter-wave Channel Models [Seite 314]
8.9.2.3 - 13.2.3 Comments on Expected Traffic and Traffic Modeling [Seite 316]
8.9.3 - 13.3 New Radio-interface Design for Low-latency 5G Wireless Access [Seite 317]
8.9.3.1 - 13.3.1 Achieving Ultra-low Latency with Strict Timing Requirements [Seite 324]
8.9.3.2 - 13.3.2 Reference-symbol Layout Design for Spectrally Efficient MIMO Communications in 5GETLA [Seite 326]
8.9.4 - 13.4 Extending the 5GETLA Reference Design to Millimeter-Wave Communications [Seite 330]
8.9.4.1 - 13.4.1 High Mobility Support in mm-Wave Communications [Seite 332]
8.9.5 - 13.5 Conclusions and Open Research Topics [Seite 333]
8.9.6 - References [Seite 334]
9 - Part III Candidate Technologies - Revolutionary [Seite 337]
9.1 - Chapter 14 New Physical-layer Waveforms for 5G [Seite 339]
9.1.1 - 14.1 Why OFDM Fails [Seite 339]
9.1.1.1 - 14.1.1 Sporadic Traffic [Seite 340]
9.1.1.2 - 14.1.2 Spectral and Temporal Fragmentation [Seite 340]
9.1.1.3 - 14.1.3 Real-time Constraints [Seite 341]
9.1.2 - 14.2 Unified Frame Structure [Seite 342]
9.1.3 - 14.3 Waveform Candidates and Multiple-access Approaches [Seite 344]
9.1.3.1 - 14.3.1 Universal Filtered Multicarrier [Seite 344]
9.1.3.1.1 - 14.3.1.1 Frequency- and Time-domain Properties [Seite 345]
9.1.3.1.2 - 14.3.1.2 Relaxed Synchronization Support and Autonomous Timing Advance [Seite 347]
9.1.3.1.3 - 14.3.1.3 Supporting Multiple Signal Layers with Interleave Division Multiple Access [Seite 348]
9.1.3.2 - 14.3.2 Generalized Frequency Division Multiplexing [Seite 350]
9.1.3.2.1 - 14.3.2.1 Principles [Seite 350]
9.1.3.2.2 - 14.3.2.2 GFDM in a Gabor Transform Setting [Seite 352]
9.1.3.2.3 - 14.3.2.3 Time-reversal Space-Time Coding for GFDM Access [Seite 353]
9.1.3.2.4 - 14.3.2.4 Reducing Latency in LTE Time-Frequency Grid [Seite 354]
9.1.3.3 - 14.3.3 Filter Bank Multicarrier [Seite 355]
9.1.3.3.1 - 14.3.3.1 Principles [Seite 355]
9.1.3.3.2 - 14.3.3.2 Multi-user Receiver Architecture [Seite 356]
9.1.3.3.3 - 14.3.3.3 Robustness of the Receiver to Channel Delay Spread [Seite 358]
9.1.3.3.4 - 14.3.3.4 Capacity Results and Analysis [Seite 359]
9.1.4 - 14.4 One-shot Random Access [Seite 362]
9.1.4.1 - 14.4.1 Bi-orthogonal Frequency Division Multiplexing [Seite 363]
9.1.4.1.1 - 14.4.1.1 Transmitter [Seite 364]
9.1.4.1.2 - 14.4.1.2 Receiver [Seite 365]
9.1.4.1.3 - 14.4.1.3 Pulse Design [Seite 365]
9.1.4.1.4 - 14.4.1.4 Numerical Results [Seite 367]
9.1.4.2 - 14.4.2 System-level Performance [Seite 368]
9.1.5 - 14.5 Conclusions [Seite 373]
9.1.6 - References [Seite 373]
9.2 - Chapter 15 Massive MIMO Communications [Seite 376]
9.2.1 - 15.1 Introduction [Seite 376]
9.2.2 - 15.2 Overview of Multi-Antenna Techniques in LTE [Seite 377]
9.2.3 - 15.3 Moving to 5G Cellular with Large-scale Antenna Arrays [Seite 379]
9.2.4 - 15.4 Antenna-array Architectures for 5G Cellular [Seite 382]
9.2.5 - 15.5 Massive MIMO for Evolved LTE Systems (Below 6 GHz) [Seite 383]
9.2.5.1 - 15.5.1 3D Channel Models [Seite 384]
9.2.5.2 - 15.5.2 Antenna-array Configurations [Seite 385]
9.2.5.3 - 15.5.3 Uplink Transmission Techniques [Seite 385]
9.2.5.4 - 15.5.4 Downlink Transmission Techniques [Seite 386]
9.2.5.4.1 - 15.5.4.1 Reciprocity-based Transmission Methods [Seite 387]
9.2.5.4.2 - 15.5.4.2 Codebook Feedback-based Methods [Seite 387]
9.2.5.4.3 - 15.5.4.3 Product Codebook Feedback-based Methods [Seite 388]
9.2.5.4.4 - 15.5.4.4 Direct Feedback Methods [Seite 389]
9.2.5.5 - 15.5.5 Massive Subsectoring with Large-scale Arrays [Seite 389]
9.2.6 - 15.6 Massive MIMO for cmWave and mmWave Systems (Above 6 GHz) [Seite 392]
9.2.6.1 - 15.6.1 Channel Modeling Above 6 GHz [Seite 392]
9.2.6.2 - 15.6.2 Hardware Implementation Issues Above 6 GHz [Seite 393]
9.2.6.3 - 15.6.3 Acquiring Channel State Information [Seite 394]
9.2.6.4 - 15.6.4 Transmission Strategies Above 6 GHz [Seite 395]
9.2.6.5 - 15.6.5 SU-MIMO Transmission [Seite 395]
9.2.6.6 - 15.6.6 MU-MIMO Transmission [Seite 396]
9.2.7 - 15.7 Conclusion [Seite 396]
9.2.8 - References [Seite 397]
9.3 - Chapter 16 Full-duplex Radios [Seite 399]
9.3.1 - 16.1 The Problem [Seite 401]
9.3.1.1 - 16.1.1 Requirements for Full Duplex Designs [Seite 403]
9.3.1.2 - 16.1.2 Do Prior Full-duplex Techniques Satisfy these Requirements? [Seite 405]
9.3.2 - 16.2 Our Design [Seite 406]
9.3.2.1 - 16.2.1 Analog Cancelation [Seite 406]
9.3.2.2 - 16.2.2 Digital Cancelation [Seite 409]
9.3.2.2.1 - 16.2.2.1 Canceling Linear Components [Seite 409]
9.3.2.2.2 - 16.2.2.2 Canceling Non-linear Components [Seite 410]
9.3.2.2.3 - 16.2.2.3 Complexity [Seite 412]
9.3.2.3 - 16.2.3 Dynamic Adaptation of Analog Cancelation [Seite 412]
9.3.2.3.1 - 16.2.3.1 Modeling the Frequency Response of Delay Lines ? [Seite 414]
9.3.2.3.2 - 16.2.3.2 Optimization Algorithm [Seite 414]
9.3.3 - 16.3 Implementation [Seite 415]
9.3.4 - 16.4 Evaluation [Seite 417]
9.3.4.1 - 16.4.1 Can We Cancel all of the Self-interference? [Seite 418]
9.3.4.1.1 - 16.4.1.1 Does Our Design Work with Commodity Radios? [Seite 419]
9.3.4.1.2 - 16.4.1.2 SNR Loss of the Received Signal in Full-duplex Mode [Seite 419]
9.3.4.2 - 16.4.2 Digging Deeper [Seite 421]
9.3.4.2.1 - 16.4.2.1 Impact of Constellation and Bandwidth [Seite 421]
9.3.4.2.2 - 16.4.2.2 Deconstructing Analog Cancelation [Seite 422]
9.3.4.2.3 - 16.4.2.3 Deconstructing Digital Cancelation [Seite 423]
9.3.4.2.4 - 16.4.2.4 Dynamic Adaptation [Seite 424]
9.3.4.3 - 16.4.3 Does Full Duplex Double Throughput? [Seite 426]
9.3.5 - 16.5 Discussion and Conclusion [Seite 427]
9.4 - Chapter 17 Point to Multi-point, In-band mmWave Backhaul for 5G Networks [Seite 429]
9.4.1 - 17.1 Introduction [Seite 429]
9.4.2 - 17.2 Feasibility of In-band Backhaul [Seite 431]
9.4.3 - 17.3 Deployment Assumptions [Seite 434]
9.4.4 - 17.4 In-band Backhaul Design Considerations [Seite 436]
9.4.5 - 17.5 TDM-based Scheduling Scheme for In-band Backhauling [Seite 437]
9.4.6 - 17.6 Concluding Remarks [Seite 441]
9.4.7 - Acknowledgments [Seite 441]
9.4.8 - References [Seite 441]
9.5 - Chapter 18 Application of NFV and SDN to 5G Infrastructure [Seite 442]
9.5.1 - 18.1 Chapter Overview [Seite 442]
9.5.2 - 18.2 Background [Seite 442]
9.5.3 - 18.3 NFV and SDN [Seite 443]
9.5.4 - 18.4 Network Planning and Engineering [Seite 444]
9.5.4.1 - 18.4.1 Cellular Network Design and Traffic Engineering [Seite 446]
9.5.4.1.1 - 18.4.1.1 Market Design [Seite 446]
9.5.4.1.2 - 18.4.1.2 Call Model [Seite 446]
9.5.4.1.3 - 18.4.1.3 Traffic Model [Seite 447]
9.5.5 - 18.5 Cellular Wireless Network Infrastructure [Seite 448]
9.5.5.1 - 18.5.1 Reference Points, Interfaces, and Protocol Stacks [Seite 448]
9.5.5.2 - 18.5.2 Description of the EPC Main Element Interactions [Seite 448]
9.5.6 - 18.6 Network Workloads and Capacity Factors [Seite 451]
9.5.6.1 - 18.6.1 EPC Workload Stress Vectors [Seite 452]
9.5.7 - 18.7 Conclusion [Seite 453]
10 - Index [Seite 455]
11 - EULA [Seite 469]

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

88,99 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok