Steam Generation from Biomass

Construction and Design of Large Boilers
 
 
Butterworth-Heinemann (Verlag)
  • 1. Auflage
  • |
  • erschienen am 24. September 2016
  • |
  • 322 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-804407-0 (ISBN)
 

Steam Generation from Biomass: Construction and Design of Large Boilers provides in-depth coverage of steam generator engineering for biomass combustion. It presents the design process and the necessary information needed for an understanding of not only the function of different components of a steam generator, but also what design choices have been made.

Professor Vakkilainen explores each particular aspect of steam generator design from the point-of-view of pressure part design, mechanical design, layout design, process design, performance optimization, and cost optimization. Topics such as fuels and their emissions, steam-water circulation, auxiliary equipment, availability and reliability, measurements and control, manufacture, erection, and inspection are covered.

Special attention is given to recovery boilers and fluidized bed boilers, and automated design and dimensioning calculation spreadsheets are available for download at the book's companion website. This book is intended for both design engineers and steam boiler operators, as well as those involved in plant management and equipment purchasing.


  • Provides a complete overview of biomass steam boilers, including processes, phenomena, and nomenclature
  • Presents a clear view of how biomass boilers differ from fossil fuel boilers
  • Covers the most used types of large-scale biomass boilers, including recovery boilers, fluidized bed boilers, and auxiliary equipment
  • Includes a companion website with spreadsheets, calculation examples, and automatic calculation tools for design and dimensioning


Esa Kari Vakkilainen is a graduate of Lappeenranta University, Finland, where he now works as professor of Sustainable Energy Systems. His professional career focuses on steam boilers especially combustion of biofuels. When fluidized beds were commercialized he worked in boiler industry especially for steam generator thermal design. In addition to CFB, Professor Vakkilainen has been involved with biomass boilers such as Kraft recovery boilers as Research Manager and Technical Manager. Before his current position in academia, he was employed by Jaakko Pöyry Oy, International consultants to pulp and paper as leading technology expert - energy and environment. Esa Vakkilainen has lectured on boilers at all major continents and been chairman of several international technical conferences.
  • Englisch
  • Oxford
  • |
  • USA
Elsevier Science
  • 8,94 MB
978-0-12-804407-0 (9780128044070)
0128044071 (0128044071)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Steam Generation From Biomass
  • Copyright Page
  • Contents
  • About the Author
  • Preface
  • Poem
  • Disclaimer
  • Nomenclature
  • Subscripts
  • 1 Principles of Steam Generation
  • 1.1 Introduction
  • 1.1.1 History of Steam Generation
  • 1.1.1.1 Early Boilers
  • 1.1.1.2 Manufacturing Developments
  • 1.1.1.3 Increasing Efficiency
  • 1.1.1.4 Forced Flow Boilers
  • 1.1.1.5 Oxyfuel Combustion
  • 1.1.2 Modern Boiler Types
  • 1.1.2.1 Large-Volume Boilers
  • 1.1.2.2 Pulverized Solid Fuel Fired Boilers
  • 1.1.2.3 Fluidized Bed Boilers
  • 1.1.2.4 Heat Recovery Boilers
  • 1.1.2.5 Recovery Boilers
  • 1.1.2.6 Package Boilers
  • References
  • 2 Solid Biofuels and Combustion
  • 2.1 Classification of Solid Biofuels
  • 2.2 Biomass Conversion to Energy Uses
  • 2.3 Biomass Usage for Energy
  • 2.3.1 Biomass Use at Country Level
  • 2.3.2 Use of Biomass in Industrial Applications
  • 2.3.3 Use of Biomass in the Transportation Sector
  • 2.3.4 Straw and Grass
  • 2.4 Biomass Combustion
  • 2.4.1 Drying
  • 2.4.2 Devolatilization
  • 2.4.3 Char Combustion
  • 2.4.4 Ash Reactions
  • 2.5 Basics of Combustion Calculations, Heat and Mass Balances
  • 2.5.1 Air Ratio
  • 2.5.2 Chemical Reactions
  • 2.5.3 Mass Balance
  • 2.5.4 Heating Value
  • 2.5.5 Heat Balance
  • 2.6 Emissions
  • 2.6.1 NOx Emissions
  • 2.6.2 SO2 Emissions
  • 2.6.3 Carbon Monoxide Emissions
  • 2.6.4 Total Reduced Sulfur Compounds
  • 2.6.5 Volatile Organic Compound and Organic Emissions
  • 2.6.6 HCl, HF
  • 2.6.7 Dust Emissions
  • References
  • 3 Boiler Processes
  • 3.1 Boiler Selection Process
  • 3.1.1 Steam/Power Requirement
  • 3.1.2 Fuel Availability
  • 3.1.3 Locations
  • 3.1.4 Boiler-Type Classes
  • 3.1.5 Boiler Purchasing
  • 3.1.6 Permits
  • 3.2 Choice of Main Design Parameters
  • 3.2.1 Increasing Main Steam Pressure and Temperature
  • 3.2.2 Placement of Heat Transfer Surfaces
  • 3.2.3 Evaporation
  • 3.2.4 Superheating
  • 3.2.5 Economizers
  • 3.2.6 Air Preheaters
  • 3.3 Heat Load Calculation
  • 3.3.1 H-p Diagram for Water/Steam
  • 3.3.2 Effect of Operating Parameters to Heat Input Profile
  • 3.3.3 High-Pressure Feedwater Heaters
  • 3.3.4 Reheating Cycle
  • 3.4 Cogeneration
  • 3.5 Main Processes
  • 3.5.1 Air System
  • 3.5.2 Flue Gas System
  • 3.5.3 Steam-Water System
  • 3.5.4 Ash System
  • 3.5.5 Fuel System
  • 3.6 Determination of Boiler Efficiency
  • 3.6.1 Useful Heat Output
  • 3.6.2 Heat and Energy Input
  • 3.6.3 Determining Efficiency With the Direct Method
  • 3.6.4 Determining Efficiency With the Indirect Method
  • 3.6.5 ASME PTC-4
  • 3.6.6 DIN 1942
  • 3.6.7 Own Power Demand
  • 3.7 Placing of Heat Transfer Surfaces, Example
  • 3.7.1 Mass Balance
  • 3.7.2 Enthalpies
  • 3.7.3 Heat Demands
  • References
  • 4 Steam-Water Circulation Design
  • 4.1 Classification of Steam-Water Side
  • 4.1.1 Large-Volume Boilers
  • 4.1.2 Natural Circulation Boiler
  • 4.1.3 Assisted Circulation
  • 4.1.4 Once-Through Boiler
  • 4.2 External Pipes
  • 4.2.1 Feedwater System
  • 4.2.2 Superheater Connecting Tubes
  • 4.2.3 Feedwater Tank
  • 4.2.4 Feedwater Pump
  • 4.2.5 Dolezahl-Attemperator
  • 4.2.6 Spray Water Group
  • 4.2.7 Drainage and Air Removal
  • 4.2.8 Continuous Blowdown
  • 4.2.9 Condensate Collection
  • 4.3 Principle of Natural Circulation
  • 4.3.1 Driving Force
  • 4.3.2 Components of Natural Circulation
  • 4.3.3 Optimization of Natural Circulation Design
  • 4.4 Steam Drum
  • 4.4.1 Steam Separation
  • 4.4.2 Steam Purity
  • 4.4.3 Steam Drum Placement
  • 4.5 Flow Theory
  • 4.5.1 Types of Flow
  • 4.5.2 Pressure Loss in Single-Phase Flow
  • 4.5.3 Friction Loss Coefficient
  • 4.5.4 Pressure Loss in Tube Inlet and Outlet
  • 4.5.5 Pressure Loss in Bends
  • 4.5.6 Pressure Loss in Two-Phase Flow
  • 4.6 Dimensioning of Steam-Water Circulation
  • 4.6.1 Downcomers and Dividers
  • 4.6.2 Wall Tubes
  • 4.6.3 Raisers
  • 4.6.4 Feedwater Pump Head
  • 4.7 Calculation of Superheater Pressure Loss
  • References
  • 5 Thermal Design of Boiler Parts
  • 5.1 Furnace Sizing
  • 5.1.1 Furnace Dimensions
  • 5.1.2 Typical Furnace Loadings
  • 5.1.3 Choice of the Furnace Outlet Temperature
  • 5.1.4 Choice of Furnace Wall Material
  • 5.1.5 Furnace Air Levels
  • 5.1.6 Circulating Fluidized Bed Furnace Design
  • 5.1.7 Furnace Heat Transfer
  • 5.1.8 Furnace Model Types
  • 5.1.9 Furnace Dimensioning, Stirred Reactor
  • 5.2 Superheater Dimensioning
  • 5.2.1 Tube Arrangement and Spacing
  • 5.2.2 Panel Superheater
  • 5.2.3 Backpass Superheater Set
  • 5.3 Convective Section Dimensioning
  • 5.3.1 Design Velocity
  • 5.3.2 Boiler Banks
  • 5.3.3 Economizers
  • 5.3.4 Air Preheaters
  • 5.4 Heat Transfer in Boilers
  • 5.4.1 Overall Heat Transfer
  • 5.4.2 Radiation Heat Transfer
  • 5.4.3 Outside Convection Heat Transfer
  • 5.4.4 Gas Side Pressure Drop, In-line
  • 5.4.5 Inside Heat Transfer, Tube Fluid
  • 5.5 Example Calculation of Heat Transfer Surface
  • 5.5.1 Heat Balance
  • 5.5.2 Heat Capacities
  • References
  • 6 Auxiliary Equipment
  • 6.1 An Overview of Auxiliary Equipment
  • 6.1.1 Auxiliary Equipment for Pulverized Firing
  • 6.1.2 Auxiliary Equipment for Grate Firing
  • 6.1.3 Auxiliary Equipment for Fluidized Bed Firing
  • 6.2 Solid Fuel Handling
  • 6.2.1 Sizing and Removing Impurities
  • 6.2.2 Handling Biofuels
  • 6.2.3 Drying Biofuels
  • 6.2.4 Storing Biofuels
  • 6.3 Liquid and Gaseous Fuel Firing
  • 6.3.1 Placement of Burners
  • 6.3.2 Burner Design
  • 6.4 Air System
  • 6.4.1 Air Fans
  • 6.4.2 Steam Air Preheaters
  • 6.4.3 Regenerative Air Preheaters
  • 6.4.4 Fluidized Bed Air Nozzles
  • 6.5 Sootblowing
  • 6.5.1 Steam Sootblower Design
  • 6.5.2 Deposit Removal
  • 6.6 Dust Removal From Flue Gas
  • 6.6.1 Electrostatic Precipitators
  • 6.6.2 Fabric Filters
  • 6.7 Ash Handling
  • 6.7.1 Submerged Ash Conveying
  • 6.7.2 Pneumatic Ash Conveying
  • 6.7.3 Ash Conveyors
  • 6.8 Silencer
  • References
  • 7 Boiler Mechanical Design
  • 7.1 Furnace Walls
  • 7.2 Superheaters
  • 7.2.1 Radiative Superheater
  • 7.2.2 Convective Superheater
  • 7.3 Economizer
  • 7.4 Air Preheaters
  • 7.4.1 Recuperative Air Preheaters
  • 7.4.2 Regenerative Air Preheaters
  • 7.5 Boiler Pressure Vessel Manufacture
  • 7.6 Pressure Part Design
  • 7.7 Pressure Part Materials
  • 7.7.1 Boiler Tube Materials
  • 7.7.2 Stress Analysis
  • 7.8 Ducts
  • References
  • 8 Availability and Reliability
  • 8.1 Availability
  • 8.2 Heat Transfer Surface Fouling
  • 8.3 Gas Side Corrosion of Heat Transfer Surfaces
  • 8.3.1 Normal Tube Surface
  • 8.3.2 High-Temperature Corrosion
  • 8.3.3 Acid Dew Point
  • 8.3.4 Alkali Corrosion
  • 8.3.5 Chloride Corrosion
  • 8.4 Water Side Corrosion and Problems
  • 8.4.1 Oxygen Corrosion
  • 8.4.2 Acid Corrosion
  • 8.4.3 Caustic Corrosion
  • 8.5 Erosion
  • 8.6 Corrosion Prevention and Surface Examination
  • 8.7 Feedwater Treatment
  • 8.7.1 Aeration
  • 8.7.2 Coagulation
  • 8.7.3 Filtration
  • 8.7.4 Chemical Softening
  • 8.7.5 Demineralization
  • 8.8 Deposits and Scale in Water and Steam Side Surfaces
  • 8.8.1 Carryover
  • 8.8.2 Foaming
  • 8.8.3 Identification of Carryover Type
  • 8.9 Managing Steam and Water Quality
  • 8.9.1 Feedwater and Boiler Water Quality Control
  • 8.9.2 Steam Quality Control
  • 8.9.3 Condensate Quality Control
  • References
  • 9 Direct and Grate Firing of Biomass
  • 9.1 Direct Firing
  • 9.2 Grate Constructions
  • 9.2.1 Stationary Grate
  • 9.2.2 Mechanical Grate
  • 9.2.3 Modern Innovative Grates
  • 9.2.4 Grate Cooling
  • 9.3 Combustion of Bark and Wood on a Grate
  • References
  • 10 Fluidized Bed Boilers for Biomass
  • 10.1 Theory of Fluidized Bed Combustion
  • 10.2 Bubbling Fluidized Bed Combustion
  • 10.3 Circulating Fluidized Bed Combustion
  • 10.4 Fluidized Bed Operation
  • 10.4.1 Coarsening
  • 10.4.2 Removal of Bottom Ash
  • 10.4.3 Control of Particle Size in Bed
  • 10.4.4 Fuel Feeding
  • 10.4.5 Limestone Feeding
  • 10.5 Separation of Particles From Gas
  • 10.5.1 Loop Seal
  • 10.5.2 Cyclones
  • 10.5.3 U-Beam Particle Separators
  • 10.6 Heat Transfer in Fluidized Boilers
  • 10.6.1 Fluidized Bed Furnace Heat Transfer
  • 10.6.2 Heat Transfer at Part-Load Operation
  • 10.6.3 Furnace Design
  • 10.6.4 External Fluid Bed Heat Transfer Surfaces
  • 10.7 Fluidized Bed Boiler Retrofits
  • References
  • 11 Recovery Boiler
  • 11.1 Principles of Kraft Recovery
  • 11.1.1 Function of the Recovery Boiler
  • 11.1.2 Black Liquor Dry Solids
  • 11.1.3 High-Temperature and Pressure-Recovery Boiler
  • 11.1.4 Safety
  • 11.2 Chemical Processes in the Recovery Boiler Furnace
  • 11.2.1 Smelt
  • 11.2.2 Reduction and Sulfidity
  • 11.2.3 Sodium
  • 11.3 Recovery Boiler Design
  • 11.3.1 Key Recovery Boiler Design Alternatives
  • 11.3.2 Key Design Specifications
  • 11.3.3 Improving Air Systems
  • 11.3.4 Multilevel Air
  • 11.3.5 Vertical Air
  • 11.3.6 Single Drum
  • 11.3.7 Evolution of Recovery Boiler Design
  • 11.3.8 Modern Recovery Boilers
  • 11.3.9 State of the Art and Current Trends
  • 11.4 Heat Transfer Surface Design and Material Selection
  • 11.4.1 Furnace Design and Materials
  • 11.4.2 Furnace Tube Materials
  • 11.4.3 Superheater Design and Materials
  • 11.4.4 Effect of the Steam Outlet Temperature
  • 11.4.5 Typical Superheater Materials
  • 11.4.6 Boiler Bank Design and Materials
  • 11.4.7 Economizer Design and Materials
  • References
  • 12 Measurements and Control
  • 12.1 Interlocks
  • 12.2 Boiler Control Principles
  • 12.2.1 Steam Flow Control
  • 12.2.2 Drum Level Control
  • 12.2.3 Fuel Rate Control
  • 12.2.4 Air Flow Control
  • 12.2.5 Furnace Draft
  • 12.2.6 Superheating Control
  • 12.2.7 Dolezahl or Steam Condensate Desuperheat
  • 12.3 Benefits of Process Control
  • 12.4 Measurements
  • 12.4.1 Mandatory Measurements
  • 12.4.2 Local Measurements
  • 12.4.3 Remote Measurements
  • 12.4.4 Typical Measurements
  • References
  • 13 Boiler Manufacture, Erection, and Maintenance
  • 13.1 Steel Support
  • 13.1.1 Hanging Boilers
  • 13.1.2 Standing Boiler
  • 13.1.3 Superheater Support Structures
  • 13.1.4 Hanging of Drum
  • 13.1.5 Hanging of Cold Surfaces
  • 13.1.6 Hanging Surfaces in the Backpass
  • 13.2 Building and Platforms
  • 13.3 Insulation
  • 13.4 Erection
  • 13.5 Maintenance
  • References
  • Appendix A: Questions
  • Appendix B: H-S Diagram
  • Appendix C: Steam Tables
  • State of saturation (Temperature table)
  • State of saturation (Pressure table)
  • Enthalpy (kJ/kg) as function of temperature (°C) and pressure (MPa)
  • Specific volume (m3/kg) as function of temperature (°C) and pressure (MPa)
  • Thermal conductivity, W/mK as function of temperature °C and pressure MPa
  • Dynamic viscosity (10-3 Pa s) as function of temperature (°C) and pressure (MPa)
  • Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

85,62 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok