Abbildung von: Beginning Apache Pig - Apress

Beginning Apache Pig

Big Data Processing Made Easy
Balaswamy Vaddeman(Autor*in)
Apress
Erschienen am 10. Dezember 2016
XXIII, 274 Seiten
E-Book
PDF mit Wasserzeichen-DRM
978-1-4842-2337-6 (ISBN)
36,99 €inkl. 7% MwSt.
Systemvoraussetzungen
für PDF mit Wasserzeichen-DRM
E-Book Einzellizenz
Als Download verfügbar
Learn to use Apache Pig to develop lightweight big data applications easily and quickly. This book shows you many optimization techniques and covers every context where Pig is used in big data analytics. Beginning Apache Pig shows you how Pig is easy to learn and requires relatively little time to develop big data applications.The book is divided into four parts: the complete features of Apache Pig; integration with other tools; how to solve complex business problems; and optimization of tools.You'll discover topics such as MapReduce and why it cannot meet every business need; the features of Pig Latin such as data types for each load, store, joins, groups, and ordering; how Pig workflows can be created; submitting Pig jobs using Hue; and working with Oozie. You'll also see how to extend the framework by writing UDFs and custom load, store, and filter functions. Finally you'll cover different optimization techniques such as gathering statistics about a Pig script, joining strategies, parallelism, and the role of data formats in good performance.

What You Will Learn Use all the features of Apache Pig Integrate Apache Pig with other tools Extend Apache Pig Optimize Pig Latin code Solve different use cases for Pig LatinWho This Book Is ForAll levels of IT professionals: architects, big data enthusiasts, engineers, developers, and big data administrators
Auflage
1st ed.
Sprache
Englisch
Verlagsort
CA
USA
Verlagsgruppe
APRESS
Illustrationen
34 s/w Abbildungen, 35 farbige Abbildungen
XXIII, 274 p. 69 illus., 35 illus. in color.
Dateigröße
Dateigröße: 5,09 MB
Schlagworte
ISBN-13
978-1-4842-2337-6 (9781484223376)
DOI
10.1007/978-1-4842-2337-6
Schweitzer Klassifikation
Thema Klassifikation
DNB DDC Sachgruppen
Dewey Decimal Classfication (DDC)
BIC 2 Klassifikation
BISAC Klassifikation
Warengruppensystematik 2.0
Balaswamy Vaddeman, Thinker, Blogger, Serious and Self-motivated Big data evangelist with 9 years of experience in IT and 4 years of experience in Big data space. My Big data experience covers multiple areas like delivery of analytical applications, product development, consulting, training, book reviews, hackathons and mentoring and helping people on forums. I have proved myself while delivering analytical applications in retail, banking and finance domain in 3 aspects (Development, Administration and Architecture) of Hadoop related technologies. At Startup Company, I had developed a Hadoop based product that was used for delivering of analytical applications without writing code. In 2013 I had won Hadoop Hackathon event for Hyderabad conducted by Cloudwick technologies. Being top contributor at stackoverflow.com, I helped many people on big data at multiple websites like stackoverflow.com and quora.com. With so much passion on big data I went ahead as independent trainer and consultant to train hundreds of people and to set big data teams in couple of companies.

Chapter 1 - Introduction.- Chapter 2 - Data types.- Chapter 3 - Grunt.- Chapter 4 - Introduction to Pig Latin.- Chapter 5 - Joins and Functions.- Chapter 6 - Pig Latin using Oozie.- Chapter 7 - Introduction to HCatalog.- Chapter 8 - Submitting Pig jobs using Hue.- Chapter 9 - Role of Pig in Apache Falcon.- Chapter 10 - Macros.- Chapter 11 - User defined Functions.- Chapter 12 - Writing your own eval and Filter Functions.- Chapter 13 - Writing your own Load and Store Functions.- Chapter 14 - Know Your Pig latin scripts.- Chapter 15 - Data formats.- Chapter 16 - Optimization.- Chapter 17 - Other Hadoop tools.- Appendix A - Builtin Functions.- Appendix B - Apache Pig in Apache Ambari.- Appendix C - HBaseStorage and ORCSTorage options.


Dateiformat: PDF
Kopierschutz: Wasserzeichen-DRM (Digital Rights Management)

Systemvoraussetzungen:

  • Computer (Windows; MacOS X; Linux): Verwenden Sie zum Lesen die kostenlose Software Adobe Reader, Adobe Digital Editions oder einen anderen PDF-Viewer Ihrer Wahl (siehe E-Book Hilfe).
  • Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions oder die App PocketBook (siehe E-Book Hilfe).
  • E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nur bedingt: Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Wasserzeichen-DRM wird hier ein „weicher” Kopierschutz verwendet. Daher ist technisch zwar alles möglich – sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.

Weitere Informationen finden Sie in unserer  E-Book Hilfe.