The Impact and Prospects of Green Chemistry for Textile Technology

Impact and Prospects of Green Chemistry for Textile Technology
 
 
Elsevier (Verlag)
  • 1. Auflage
  • |
  • erschienen am 15. November 2018
  • |
  • 568 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-08-102492-8 (ISBN)
 

The Impact and Prospects of Green Chemistry for Textile Technology provides a review and summary of the role of green chemistry in textiles, including the use of green agents and sustainable technologies in different textile applications. The book systematically covers the history and chemistry of eco-friendly colorants, chitin, chitosan, cyclodextrin, biomordants, antimicrobial, UV protective, flame retardant, insect repellant textiles, and advanced pre- and post- treatment technologies, such as the sonochemistry and plasma methods currently employed in functional modifications. The book also pays attention to the remediation of textile effluents using novel, sustainable and inexpensive adsorbents.

Written by high profile contributors with many years of experience in textile technology, the book gives engineers and materials scientists in the textile industry the information they need to effectively deploy these green technologies and processes.

  • Introduces green chemistry and sustainable technologies, and explores their role in different textile applications
  • Examines the use of renewable materials, such as biopolymers, dyes and pigments, biomordants, polyphenols and plant extracts in functional finishing applications
  • Deals the functional modification of textiles using state-of-the-art biotechnology and nanotechnology
  • Englisch
  • San Diego
  • |
  • Großbritannien
  • 45,34 MB
978-0-08-102492-8 (9780081024928)
weitere Ausgaben werden ermittelt
  • Front Cover
  • The Impact and Prospects of Green Chemistry for Textile Technology
  • Copyright
  • Contents
  • List of contributors
  • Preface
  • 1 Green chemistry in the wet processing of textiles
  • 1.1 Textiles-A serious threat to sustainable environment
  • 1.1.1 Chemistry of textile wet processing
  • 1.1.2 Wet processing of textiles and issues of sustainability
  • 1.2 Green chemistry and sustainability in textile sector
  • 1.2.1 Sustainability
  • 1.2.2 Recent sustainable chemical developments
  • 1.2.3 Ionic liquids as green solvents in sustainable wet processing
  • 1.2.4 Sustainable improvements of wet processing
  • 1.2.5 Green chemistry in wet textile processing
  • 1.2.6 Biomaterials in textile processing
  • 1.2.7 Enzymes as biomaterials in textile processing
  • 1.2.8 Biomaterials for dying applications
  • 1.2.9 Biomaterial for finishing
  • 1.2.10 Plasma technology as green approach in textile processing
  • 1.2.11 Supercritical fluid technology as green approach in textile processing
  • 1.2.12 Green fibers as replacement of synthetic fibers
  • 1.3 Conclusion and future recommendations
  • References
  • 2 Sustainable colorants
  • 2.1 Introduction
  • 2.1.1 Natural dyes
  • 2.1.1.1 Plant or herbal origin
  • 2.1.1.2 Animal origin
  • 2.1.1.3 Mineral origin
  • 2.1.1.4 Microbial and fungal origin
  • 2.1.2 Chemistry and classification
  • 2.1.2.1 Based on chemical structure
  • 2.1.2.2 Based on application methods
  • 2.1.3 Extraction
  • 2.1.4 Functional applications
  • 2.1.4.1 Mordanting and dyeing
  • 2.1.4.2 Mordanting methods
  • 2.1.4.3 Dyeing
  • 2.1.4.4 Advanced dyeing
  • 2.1.5 Future trends
  • References
  • Sources of further information
  • Further reading
  • 3 Metal mordants and biomordants
  • 3.1 Introduction
  • 3.2 Classification of mordants
  • 3.3 Conventional metal mordants and their environmental impacts
  • 3.4 Biomordants and novel approaches
  • 3.5 Future trends
  • References
  • Further reading
  • 4 Sustainable cyclodextrin in textile applications
  • 4.1 Introduction
  • 4.2 Cyclodextrins
  • 4.2.1 Chemistry of cyclodextrins
  • 4.2.2 Properties of cyclodextrins
  • 4.2.3 Cyclodextrins solubility and its derivatives
  • 4.3 Inclusion complexes and its classification
  • 4.3.1 Classification of cyclodextrins inclusion complexes
  • 4.4 Toxicological considerations
  • 4.5 Applications of cyclodextrins
  • 4.5.1 Pharmaceuticals
  • 4.5.2 Food and flavors industry
  • 4.5.3 Agriculture industry
  • 4.5.4 Chemical industry
  • 4.5.5 Cosmetics and toiletries
  • 4.6 Textile and apparel industry
  • 4.7 Binding mechanism of ß-CD on textiles
  • 4.8 Applications of ß-cyclodextrin in textile processing
  • 4.8.1 Textile auxiliary
  • 4.8.2 Textile dyeing
  • 4.8.3 Textile finishing
  • 4.8.3.1 Fragrance and antimicrobial finish
  • 4.8.3.2 Medical textiles
  • 4.8.3.3 Cosmetotextile
  • 4.8.3.4 UV-protective finish
  • 4.8.4 Textile wastewater treatment
  • 4.9 Chemical release properties of ß-CD
  • 4.10 Sustainable impact of ß-cyclodextrin in textile industry
  • 4.11 Textile modifications and developments
  • 4.12 Future prospects
  • 4.13 Conclusion
  • References
  • Further reading
  • 5 Recent advances in application of chitosan and its derivatives in functional finishing of textiles
  • 5.1 Introduction
  • 5.1.1 Sources
  • 5.1.2 Chemistry and deacetylation methods
  • 5.1.3 Physicochemical characteristics of chitosan
  • 5.1.3.1 Degree of deacetylation (DDA)
  • 5.1.3.2 Molecular weight ( M W)
  • 5.1.3.3 Solubility
  • 5.1.3.4 Viscosity
  • 5.1.4 Derivatives
  • 5.1.4.1 Carboxylate derivatives
  • 5.1.4.2 Sulfur-containing derivatives
  • 5.1.4.3 Phosphorus derivatives
  • 5.1.4.4 Nitrogen-containing chitosan derivatives
  • 5.2 Modification of textiles
  • 5.2.1 Functional finishing
  • 5.2.1.1 Antimicrobial finishing
  • 5.2.1.2 Antiodor finishing
  • 5.2.1.3 Blood coagulant effect
  • 5.2.1.4 Blood anticoagulant effect
  • 5.2.1.5 Antistatic finishing
  • 5.2.1.6 Durable press/wrinkle resistance finishing
  • 5.2.1.7 UV-protection finishing
  • 5.3 Applications of chitin and chitosan in textile industry
  • 5.3.1 Medical textiles
  • 5.3.1.1 Antimicrobial fabrics
  • 5.3.1.2 Wound dressing
  • 5.3.1.3 Sutures
  • 5.3.2 Dyeability improvement
  • 5.3.3 Textile printing
  • 5.3.4 Sportswear
  • 5.4 Future trends
  • 5.5 Conclusion
  • References
  • 6 Enzymes for green chemical processing of cotton
  • 6.1 Introduction
  • 6.2 Enzymes
  • 6.2.1 Enzymes nomenclature and classifications
  • 6.2.2 Enzymes as biocatalysts
  • 6.2.2.1 Activity of enzymes vs parameters of reactions
  • 6.2.2.2 Specificity of enzymes
  • 6.3 Application of enzymes for green processing of cotton
  • 6.3.1 Enzymatic desizing
  • 6.3.2 Bioscouring
  • 6.3.3 Biobleaching
  • 6.3.4 Peroxide killer
  • 6.3.5 Biowashing of denim fabric
  • 6.3.6 Biopolishing
  • 6.3.7 Enzymes for combined processing of cotton
  • 6.3.8 Enzymes for functional finishing of cotton
  • 6.4 Advanced techniques for enhancing efficiency of enzymatic processes
  • 6.5 Conclusion
  • References
  • 7 The sonochemical functionalization of textiles
  • 7.1 Introduction
  • 7.2 Mechanism of the sonochemical deposition of nanoparticles on textiles
  • 7.3 Ultrasound-assisted deposition of metal nano-oxides on textiles and their antibacterial properties
  • 7.3.1 Synthesis and deposition of ZnO nanoparticles
  • 7.3.2 Synthesis and deposition of CuO nanoparticles
  • 7.3.3 Deposition of MgO and Al2O3 nanoparticles
  • 7.3.4 Sonochemical synthesis of a novel Zn-doped CuO nanocomposite, an inhibitor of multidrug-resistant (MDR) bacteri ...
  • 7.3.5 The sonochemical coating of cotton withstands 65 washing cycles at hospital washing standards and retains its a ...
  • 7.3.6 Sonochemical codeposition of antibacterial nanoparticles and dyes on textiles
  • 7.4 Conclusion
  • References
  • 8 Nonthermal plasma: A promising green technology to improve environmental performance of textile industries
  • 8.1 Introduction
  • 8.2 Environmental impacts of wet-chemical processing of textile
  • 8.3 Introduction to plasma technology
  • 8.4 Application of plasma technology for eco-friendly processing of textiles
  • 8.5 Nonthermal plasma treatment of cotton textiles
  • 8.6 Nonthermal plasma treatment of polyester textiles
  • 8.7 Conclusion and future directions
  • References
  • 9 Textile finishing with biomacromolecules: A low environmental impact approach in flame retardancy
  • 9.1 Introduction
  • 9.2 Mechanisms involved in textile flame retardancy
  • 9.3 Structure and fire performances of selected flame retardant biomacromolecules
  • 9.3.1 Whey proteins
  • 9.3.2 Caseins
  • 9.3.3 Hydrophobins
  • 9.3.4 Deoxyribonucleic acids
  • 9.4 Conclusions and future perspectives
  • Acknowledgments
  • References
  • Further reading
  • 10 Antimicrobial textiles
  • 10.1 Introduction
  • 10.2 Important definition-related antimicrobial textiles ( Pelczar et al., 1993)
  • 10.2.1 Antimicrobial agent
  • 10.2.2 Bactericidal agent
  • 10.2.3 Bacteriostatic agent
  • 10.2.4 Minimum inhibitory concentration
  • 10.2.5 Minimum bactericidal concentration
  • 10.3 Microorganisms and mode of action of antimicrobial agents
  • 10.4 Antimicrobial agents used for textiles
  • 10.4.1 Plant derived antimicrobial agents
  • 10.4.1.1 Phenolic compounds
  • 10.4.1.2 Quinones
  • 10.4.1.3 Flavonoids
  • 10.4.1.4 Tannins
  • 10.4.1.5 Essential oils and terpenoids
  • 10.4.1.6 Curcuminoids
  • 10.4.1.7 Polysaccharide
  • 10.4.2 Animal-derived antimicrobial agents
  • 10.4.2.1 Chitosan and its derivatives
  • 10.5 Application of natural antimicrobial agents on textiles
  • 10.5.1 Pad-dry-cure method
  • 10.5.1.1 Application through cyclodextrin
  • 10.5.1.2 Micro/nanoencapsulation
  • 10.5.2 Exhaust dyeing method
  • 10.6 Key issues related to plant-derived antimicrobial agents
  • 10.6.1 Concentration of extract
  • 10.6.2 Method of extraction process
  • 10.6.3 Source of extract
  • 10.6.4 Other performance properties of textiles
  • 10.7 Conclusion
  • References
  • Further reading
  • 11 Insect-repellent textiles using green and sustainable approaches
  • 11.1 Introduction
  • 11.2 Various types of bio-insect repellents based on scientific origin
  • 11.2.1 Essential oils and their extracts
  • 11.2.1.1 Lemon eucalyptus (Corymbia citriodora) (Myrtacace genus)
  • 11.2.1.2 Citronella (Cymbopogon family) (Poaceae genus)
  • 11.2.1.3 Neem (Meliaceae genus)
  • 11.2.2 Natural oil
  • 11.3 Mechanism of action of insect repellents against insects
  • 11.4 Application of natural insect repellents on textile substrates
  • 11.4.1 Various ways to impart insect-repellent/mosquito-repellent property to textile substrates
  • 11.4.1.1 Application of microencapsulated repellents by pad-dry-cure technique
  • Use of lemon grass oil for mosquito-repellent finish on polyester
  • Use of citronella oil for mosquito-repellent finish on cotton
  • Use of herbal extract of the Andrographis paniculata plant for mosquito-repellent finish on cotton
  • 11.4.1.2 Direct application of natural repellents by pad-dry-cure method
  • Use of mint leaves for mosquito-repellent finish on cotton
  • Use of citronella and lavender oil on cotton
  • 11.5 Integration of active ingredients to the textile substrates
  • 11.6 Bio-based natural repellents: Safety issue
  • 11.7 Evaluation methods
  • 11.7.1 Cone test (Anuar and Yusof, 2016)
  • 11.7.2 Cage test (Anuar and Yusof, 2016)
  • 11.7.3 Modified excito chamber method (Anuar and Yusof, 2016)
  • 11.7.3.1 Mosquito collection
  • 11.7.3.2 Repellency behavioral tests
  • 11.7.4 Field test (Kim et al., 2005)
  • 11.8 Application of insect-repellent textiles
  • 11.9 Conclusions and future challenges
  • References
  • 12 UV-protective textiles
  • 12.1 Introduction
  • 12.2 UV effects on the human body
  • 12.3 What is UV index (UVI)?
  • 12.4 What is UV protection factor (UPF)?
  • 12.5 Standards for UV-protective textiles
  • 12.5.1 Australia/New Zealand
  • 12.5.2 United States of America
  • 12.5.3 Europe
  • 12.6 Fabric factors affecting UPF
  • 12.6.1 Effects of fiber chemistry on UPF
  • 12.6.2 Effects of yarn structure on UPF
  • 12.6.3 Effects of weave type, porosity, and cover factor on UPF
  • 12.6.4 Effects of fabric weight and thickness on UPF
  • 12.6.5 Effects of dyeing on UPF
  • 12.6.6 Effects of stretching on UPF
  • 12.6.7 Effects of wet treatments on UPF
  • 12.6.8 Effects of bleaching treatments on UPF
  • 12.6.9 Effects of UV-absorber materials on UPF
  • 12.7 Mechanisms of UV protection finishing agents
  • 12.8 UV-protective agents
  • 12.8.1 Dyes and pigments
  • 12.8.2 Inorganic UV-absorbing agents
  • 12.8.3 UV nanoabsorbers
  • 12.8.4 TiO2 as UV-blocking agent
  • 12.8.5 ZnO as UV-blocking agent
  • 12.9 Graphen as UV-blocking agent
  • 12.10 Environmental issues of synthetic UV finishing agents
  • 12.11 Eco-friendly materials for finishing of UV-protective textiles
  • 12.12 Future trends
  • 12.13 Conclusion
  • References
  • Further reading
  • 13 Significance of bioadsorption process on textile industry wastewater
  • 13.1 Introduction
  • 13.2 Textile industry wastewater
  • 13.2.1 Sources of water pollution
  • 13.2.2 Wastewater treatment in textile industry
  • 13.2.2.1 Biological method
  • 13.2.2.2 Chemical methods
  • 13.2.2.3 Physical methods
  • 13.2.3 Environmental impact of textile industry wastewater
  • 13.2.3.1 Effect on water environment
  • 13.2.3.2 Effect on soil and environment
  • 13.2.3.3 Effect on air environment
  • 13.2.3.4 Effect on socioeconomical environment
  • 13.2.4 Environmental legislation
  • 13.3 Adsorption technique in textile industry
  • 13.3.1 Theory
  • 13.3.2 Method for preparations of adsorbent (activated carbon)
  • 13.3.3 Mechanism of adsorption
  • 13.3.4 Physisorption
  • 13.3.5 Chemisorption
  • 13.3.6 Adsorption isotherm model
  • 13.3.7 Langmuir isotherm model
  • 13.3.8 Freundlich isotherm model
  • 13.3.9 Adsorption kinetics
  • 13.3.10 Classification of adsorbent for textile industry wastewater
  • 13.4 Commercial adsorbent
  • 13.4.1 Activated carbon
  • 13.4.2 Silica gel
  • 13.4.3 Zeolite
  • 13.5 Noncommercial low-cost adsorbents
  • 13.5.1 Natural occurrence
  • 13.5.2 Fungi
  • 13.5.3 Bacteria
  • 13.5.4 Chitosan
  • 13.5.5 Algae
  • 13.5.6 Peat
  • 13.6 Nature of occurrence (by-products)
  • 13.6.1 Agricultural waste
  • 13.6.2 Industrial waste
  • 13.7 Factors affecting adsorption process
  • 13.7.1 Surface area
  • 13.7.2 Effect of initial dye concentration
  • 13.7.3 Effect of adsorbent dosage
  • 13.7.4 Effect of pH
  • 13.7.5 Effect of temperature
  • 13.7.6 Effect of contact time
  • 13.7.7 Mixing
  • 13.8 Mode of operation
  • 13.8.1 Batch mode
  • 13.8.2 Continuous
  • 13.8.3 Alternative in adsorption process
  • 13.8.4 Deadsorption/regeneration method
  • 13.8.5 Disposal of adsorbents
  • 13.9 Future prospects
  • 13.10 Outcome
  • References
  • Further reading
  • 14 Application of chitosan derivatives as promising adsorbents for treatment of textile wastewater
  • 14.1 Introduction
  • 14.2 Textile wastewater treatment
  • 14.2.1 Removal of dye and other organic pollutants
  • 14.2.1.1 Chitosan and chitosan mixtures
  • 14.2.1.2 Chitosan derivatives
  • 14.2.1.3 Chitosan nanofibers and nanofilms
  • 14.2.1.4 Chitosan nanoparticles
  • 14.2.2 Removal of heavy metals
  • 14.2.2.1 Chitosan and chitosan mixture
  • 14.2.2.2 Chitosan derivatives
  • 14.2.2.3 Chitosan nanofibers
  • 14.2.2.4 Chitosan nanoparticles
  • 14.3 Conclusions
  • References
  • Further reading
  • 15 Recent advances in remediation of synthetic dyes from wastewaters using sustainable and low-cost adsorbents
  • 15.1 Introduction
  • 15.2 Dyes remediation
  • 15.2.1 Industrial wastes
  • 15.2.2 Clay minerals
  • 15.2.3 Siliceous materials
  • 15.2.4 Zeolites
  • 15.2.5 Agricultural solid wastes and biomass
  • 15.3 Biosorption using plant materials
  • 15.4 Shortcoming, recent advances, and future aspects
  • 15.5 Mechanism
  • 15.6 Conclusion and future prospects
  • Acknowledgment
  • References
  • 16 Treatment of industrial dyes using chitosan-supported nanocomposite adsorbents
  • 16.1 Introduction
  • 16.1.1 Current technology for the treatment of dye effluents
  • 16.1.2 Nanomaterials to control water pollutant
  • 16.1.3 Adsorption of dyes
  • 16.1.4 Adsorption-desorption mechanism
  • 16.1.5 Chitosan-supported nanocomposite
  • 16.2 Conclusion
  • Acknowledgments
  • References
  • Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

261,80 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen