Semiconductor Physics

Principles, Theory and Nanoscale
 
 
Oxford University Press
  • erschienen am 22. September 2020
  • |
  • 832 Seiten
 
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-0-19-107803-3 (ISBN)
 
The subject of semiconductor physics today includes not only many of the aspects that constitute solid state physics, but also much more. It includes what happens at the nanoscale and at surfaces and interfaces, behavior with few interaction events and few carriers -- electrons and their quasi-particle holes -- in the valence bands, the exchange of energies in various forms, the coupling of energetic events over short and long length scales, quantum reversibility tied to macroscale linearity and eventually to nonlinearities, the thermodynamic and statistical consequences of fluctuation-dissipation, and others. This text brings together traditional solid-state approaches from the 20th century with developments of the early part of the 21st century, to reach an understanding of semiconductor physics in its multifaceted forms. It reveals how an understanding of what happens within the material can lead to insights into what happens in its use. The collection of four textbooks in the Electroscience series culminates in a comprehensive understanding of nanoscale devices - electronic, magnetic, mechanical and optical - in the 4th volume. The series builds up to this last subject with volumes devoted to underlying semiconductor and solid-state physics.
  • Englisch
  • Oxford
  • |
  • Großbritannien
468 color line figures
  • 10,78 MB
978-0-19-107803-3 (9780191078033)
weitere Ausgaben werden ermittelt
Sandip Tiwari is Charles N. Mellowes Professor in Engineering at Cornell University and Visiting Professor at Université de Paris-Sud (Orsay). His contributions to engineering have included the invention of nanocrystal memories, as a group researcher in the first demonstration of SiGe bipolar transistor and a variety of others of fundamental importance--theoretical and experimental--in electronic and optical devices, circuits and architectures. He was founding editor-in-chief of IEEE's Transactions on Nanotechnology. Among the various recognitions of his contributions are the Cledo Brunetti award of IEEE (2007), the Young Scientist Award from Institute of Physics' GaAs & Related Compounds (2003), the Distinguished Alumni award of IIT Kanpur (2002), and the fellowships of IEEE (1994) and APS (1998).
  • Cover
  • Semiconductor Physics: Principles, Theory and Nanoscale
  • Copyright
  • Dedication
  • Epigraph
  • Acknowledgments
  • Contents
  • Introduction to the series
  • Introduction
  • Chapter 1: Hamiltonians and solution techniques
  • 1.1 Hamiltonian
  • 1.2 Preliminaries
  • 1.3 Perturbation approaches
  • 1.3.1 Time-independent perturbation
  • 1.3.2 Time-dependent perturbation
  • 1.3.3 Scattering by the perturbation
  • 1.4 Fast and slow, and the Born-Oppenheimer/adiabatic approximation
  • 1.5 A 2-electron and 2-atom system
  • 1.6 N non-interacting electrons in the presence of nuclei
  • 1.7 N interacting electrons in the presence of nuclei
  • 1.7.1 Hartree approximation
  • 1.7.2 Hartree-Fock approximation
  • 1.7.3 Correlations
  • 1.8 Screening
  • 1.8.1 Debye-Hückel and Thomas-Fermi screening
  • 1.8.2 Static versus dynamic screening, and a note on permittivity
  • 1.9 Summary
  • 1.10 Concluding remarks and bibliographic notes
  • 1.11 Exercises
  • Chapter 2: Entropy, informationand energy
  • 2.1 Entropy
  • 2.2 Fisher entropy
  • 2.3 Principle of minimum negentropy or maximum entropy
  • 2.4 Examples of Fisher information applied to particles
  • 2.4.1 One-dimensional Schrödinger equation
  • 2.4.2 Maxwell-Boltzmann distribution
  • 2.4.3 Diffusion
  • 2.5 Summary
  • 2.6 Concluding remarks and bibliographic notes
  • 2.7 Exercises
  • Chapter 3: Waves and particles in the crystal
  • 3.1 Waves and particles: Classical and quantum views
  • 3.2 Lattice and crystal
  • 3.3 Reciprocal lattice, Brillouin zones and real-reciprocal relationships
  • 3.4 Electrons in the periodic potential and the reduced zone
  • 3.4.1 Bloch's theorem
  • 3.5 Free electron versus Bloch electron
  • 3.6 A toy model of periodic potential perturbation
  • 3.7 Bands and bandgap's nature from the toy model
  • 3.8 Nearly free electron models
  • 3.9 Jones zone
  • 3.10 Symmetries
  • 3.11 Atomic motion: Phonons
  • 3.11.1 Toy model: Two-atom basis chain
  • 3.12 Summary
  • 3.13 Concluding remarks and bibliographic notes
  • 3.14 Exercises
  • Chapter 4: Bandstructures
  • 4.1 Bonding and binding
  • 4.2 Tight binding
  • 4.2.1 A one-dimensional tight binding toy model
  • 4.2.2 Reflections on tight binding
  • 4.3 Orthogonalized plane waves method
  • 4.4 Pseudopotential method
  • 4.5 Density functional method
  • 4.6 k · p method
  • 4.7 Effective mass theorem and Wannier functions
  • 4.8 Valence bands
  • 4.8.1 Valence bands without spin-orbit coupling
  • 4.8.2 Valence bands with spin-orbit coupling
  • 4.9 Bandgaps
  • 4.10 Gapless semiconductors
  • 4.11 Example electron bandstructures
  • 4.12 Density of states and van Hove singularities
  • 4.13 Example phonon bandstructures
  • 4.14 Summary
  • 4.15 Concluding remarks and bibliographic notes
  • 4.16 Exercises
  • Chapter 5: Semiconductor surfaces
  • 5.1 Implications of surface and interface
  • 5.2 A semi-classical view
  • 5.3 A one-dimensional surface toy model
  • 5.4 States at surfaces
  • 5.5 Surface reconstruction
  • 5.6 Surface phonons
  • 5.7 Summary
  • 5.8 Concluding remarks and bibliographic notes
  • 5.9 Exercises
  • Chapter 6: Semiconductor interfaces and junctions
  • 6.1 Interfaces and junctions
  • 6.2 Metal-semiconductor interface and junctions
  • 6.3 Induced gap states and Fermi level pinning
  • 6.4 Heterostructure
  • 6.5 Abrupt heterostructures
  • 6.6 Abrupt heterojunctions in equilibrium
  • 6.7 Graded heterostructures
  • 6.8 Polarized heterojunctions
  • 6.9 Summary
  • 6.10 Concluding remarks and bibliographic notes
  • 6.11 Exercises
  • Chapter 7: Point perturbations
  • 7.1 Defects and perturbations
  • 7.2 Energetics of point perturbations
  • 7.3 Electrons at the point perturbation center
  • 7.3.1 Shallow dopants
  • 7.4 Deep centers
  • 7.4.1 Tight binding as a defect-molecule model
  • 7.4.2 Vacancy
  • 7.4.3 Interstitials
  • 7.4.4 Substitutional impurities
  • 7.5 Transition metal impurities
  • 7.6 Complexes
  • 7.6.1 The As antisite defect in GaAs (AsGa)
  • 7.6.2 DX centers
  • 7.7 Interface and bulk defects in dielectrics
  • 7.7.1 Pb and other centers in SiO2 and Si
  • 7.7.2 F centers
  • 7.7.3 Poole-Frenkel conduction
  • 7.8 Summary
  • 7.9 Concluding remarks and bibliographic notes
  • 7.10 Exercises
  • Chapter 8: Transport and evolution of classical and quantum ensembles
  • 8.1 Transport with vanishing scattering
  • 8.2 Classical Liouville's theorem
  • 8.3 Quantum Liouville equation
  • 8.4 Fokker-Planck equation
  • 8.5 Boltzmann transport equation
  • 8.5.1 Scattering
  • 8.6 Relaxation time approximation
  • 8.7 Conservation equations from Boltzmann transport
  • 8.8 Brownian motion
  • 8.9 Randomness and stochasticity
  • 8.10 The Langevin and Fokker-Planck equations redux
  • 8.11 Markov process and Kolmogorov equation
  • 8.12 Drude equation
  • 8.13 Summary
  • 8.14 Concluding remarks and bibliographic notes
  • 8.15 Exercises
  • Chapter 9: Scattering-constrained dynamics
  • 9.1 Thermal equilibrium
  • 9.2 Transport in generalized form
  • 9.2.1 Expectations and time constants off-equilibrium
  • 9.2.2 Thermal conductivity due to carriers
  • 9.2.3 Thermoelectric effects
  • 9.2.4 Thermoelectromagnetic effects
  • 9.2.5 Thermomagnetic effects
  • 9.3 Frequency dependence
  • 9.4 Summary
  • 9.5 Concluding remarks and bibliographic notes
  • 9.6 Exercises
  • Chapter 10: Major scattering processes
  • 10.1 General comments on scattering
  • 10.1.1 Scattering cross-section
  • 10.1.2 Matrix element calculation
  • 10.1.3 Matrix element for ionized impurity scattering
  • 10.2 Scattering by phonons
  • 10.2.1 Acoustic phonon interactions
  • 10.2.2 Optical phonon interactions
  • 10.2.3 Deformation interaction (LA, LO and TO)
  • 10.2.4 Piezoelectric interaction (LA)
  • 10.2.5 Polar mode interaction (LO)
  • 10.3 Umklapp processes
  • 10.4 Scattering potentials, matrix elements and scattering time constants
  • 10.5 Different scattering mechanisms simultaneously
  • 10.6 Mobilities of semiconductors
  • 10.7 Frequency effects
  • 10.8 Carrier response in high electric fields
  • 10.9 Summary
  • 10.10 Concluding remarks and bibliographic notes
  • 10.11 Exercises
  • Chapter 11: Particle generation and recombination
  • 11.1 Radiative recombination and generation
  • 11.2 Non-radiative processes: Hall-Shockley-Read
  • 11.3 Non-radiative processes: Auger
  • 11.3.1 Quantum treatment of the Auger process
  • 11.4 Surface recombination
  • 11.4.1 Neumann boundary conditions
  • 11.4.2 Surface recombination
  • 11.4.3 Surface recombination with Fermi level pinning
  • 11.5 Summary
  • 11.6 Concluding remarks and bibliographic notes
  • 11.7 Exercises
  • Chapter 12: Light interactions with semiconductors
  • 12.1 Electron-photon interactions across the bandgap
  • 12.1.1 Allowed transitions
  • 12.1.2 Forbidden transitions
  • 12.1.3 Phonon-assisted indirect transitions
  • 12.1.3.1 Allowed phonon-assisted indirect transitions
  • 12.1.3.2 Forbidden phonon-assisted indirect transitions
  • 12.1.3.3 Doping consequences in band-to-band transitions
  • 12.1.3.4 Field dependence of absorption
  • 12.1.3.5 Temperature dependence of absorption
  • 12.2 Free carrier absorption
  • 12.3 Excitons, and absorption by excitons
  • 12.4 Absorption by crystal vibrations
  • 12.5 Absorption by impurity states
  • 12.6 Luminescence
  • 12.7 Summary
  • 12.8 Concluding remarks and bibliographic notes
  • 12.9 Exercises
  • Chapter 13: Causality and Green's functions
  • 13.1 Causality, determinism and correlations
  • 13.2 Causality, and time and space immutability
  • 13.3 Green's functions
  • 13.4 Green's functions in classical and quantum evolution under scattering
  • 13.5 Summary
  • 13.6 Concluding remarks and bibliographic notes
  • 13.7 Exercises
  • Chapter 14: Quantum to macroscale and linear response
  • 14.1 Causality's implication in linear response
  • 14.2 Linear response theory and dielectric function
  • 14.3 Linear response of a damped oscillator
  • 14.3.1 Lorentz model
  • 14.3.2 Oscillating electron model
  • 14.4 Quantum-statistical view of response
  • 14.5 Summary
  • 14.6 Concluding remarks and bibliographic notes
  • 14.7 Exercises
  • Chapter 15: Onsager relationships
  • 15.1 Flux-flow and Onsager relationships as linear responses
  • 15.2 Examples of Onsager consequences
  • 15.3 Summary
  • 15.4 Concluding remarks and bibliographic notes
  • 15.5 Exercises
  • Chapter 16: Noise
  • 16.1 Characterization of signals and their randomness
  • 16.2 Randomness
  • 16.2.1 Bertrand's paradox
  • 16.3 Fluctuations and noise
  • 16.3.1 Quantum and thermodynamic connection to resonance
  • 16.3.2 Thermal noise in linear systems
  • 16.3.3 Partition thermal noise
  • 16.4 Shot noise in linear systems
  • 16.4.1 Transit, surface charge and shot noise analysis
  • 16.5 Low-frequency noise
  • 16.5.1 Noise from trapping-detrapping
  • 16.5.2 Hooge parameters and mélange
  • 16.6 Summary
  • 16.7 Concluding remarks and bibliographic notes
  • 16.8 Exercises
  • Chapter 17: Stress and strain effects
  • 17.1 Strained layers
  • 17.2 Band alignment and bandstructure consequences
  • 17.2.1 Effect of hydrostatic stress
  • 17.2.2 Effect of shear stress
  • 17.2.3 Band warping
  • 17.2.4 Bandgap changes
  • 17.3 Transport and confinement
  • 17.4 Strain with compositional consequences
  • 17.5 Summary
  • 17.6 Concluding remarks and bibliographic notes
  • 17.7 Exercise
  • Chapter 18: High permittivity dielectrics
  • 18.1 Permittivity and the material's related characteristics
  • 18.2 Soft phonons
  • 18.3 Summary
  • 18.4 Concluding remarks and bibliographic notes
  • 18.5 Exercises
  • Chapter 19: Remote processes
  • 19.1 Remote phonon scattering
  • 19.2 Short- and long-range electron Coulomb effects
  • 19.3 Phonon drag
  • 19.4 Summary
  • 19.5 Concluding remarks and bibliographic notes
  • 19.6 Exercises
  • Chapter 20: Quantum confinement and monolayer semiconductors
  • 20.1 Heterostructure interfaces and quantum wells
  • 20.1.1 Electron inversion layer in SiO2/Si
  • 20.1.2 Confinement by infinite and finite potential
  • 20.1.3 Potential in confinement conditions
  • 20.2 Confinement of holes
  • 20.3 Monolayer semiconductors
  • 20.3.1 Graphene
  • 20.3.2 Nanotubes
  • 20.4 Quantum superlattices
  • 20.4.1 Shallow dopants in confined conditions
  • 20.5 Screening in confined conditions
  • 20.6 Scattering in confined conditions
  • 20.7 Optical transitions in confined conditions
  • 20.7.1 Selection rules
  • interband and intraband transitions
  • 20.8 Summary
  • 20.9 Concluding remarks and bibliographic notes
  • 20.10 Exercises
  • A: Integral transform theorems
  • A.1 Parseval's theorem
  • A.2 Convolution theorem
  • A.3 Correlation theorem
  • A.4 Wiener-Khintchin theorem
  • A.5 Carson's theorem
  • A.6 Campbell's theorem
  • B: Various useful functions
  • C: Random processes
  • C.1 Bernoulli process
  • C.2 Binomial distribution
  • C.3 Poisson random process
  • C.4 Gaussian random process
  • C.5 Cauchy or Lorentz distribution
  • D: Calculus of variation, and the Lagrangian method
  • E: A thermodynamics primer
  • E.1 Classical thermodynamic view
  • E.2 Implications for bosons and fermions
  • F: Maxwell-Boltzmann distribution function
  • G: Spin and spin matrices
  • H: Density of states
  • I: Oscillator strength
  • J: Effective mass tensor
  • K: A and B coefficients, and spontaneous and stimulated emission
  • L: Helmholtz theorem and vector splitting
  • M: Mode coupling and Purcell effect
  • N: Vector and scalar potentials
  • O: Analyticity, Kramers-Kronig and Hilbert transforms
  • O.1 Analytic function
  • O.2 Cauchy integration and residue
  • O.3 Cauchy principal value
  • O.4 Kramers-Kronig relations as Hilbert transforms
  • P: Particle velocities
  • Glossary
  • Index

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

63,49 €
inkl. 5% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen