Applied Nanoindentation in Advanced Materials

 
 
Wiley (Verlag)
  • erschienen am 18. August 2017
  • |
  • 704 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
978-1-119-08451-8 (ISBN)
 
Research in the area of nanoindentation has gained significant momentum in recent years, but there are very few books currently available which can educate researchers on the application aspects of this technique in various areas of materials science.
Applied Nanoindentation in Advanced Materials addresses this need and is a comprehensive, self-contained reference covering applied aspects of nanoindentation in advanced materials. With contributions from leading researchers in the field, this book is divided into three parts. Part one covers innovations and analysis, and parts two and three examine the application and evaluation of soft and ceramic-like materials respectively.
Key features:
* A one stop solution for scholars and researchers to learn applied aspects of nanoindentation
* Contains contributions from leading researchers in the field
* Includes the analysis of key properties that can be studied using the nanoindentation technique
* Covers recent innovations
* Includes worked examples
Applied Nanoindentation in Advanced Materials is an ideal reference for researchers and practitioners working in the areas of nanotechnology and nanomechanics, and is also a useful source of information for graduate students in mechanical and materials engineering, and chemistry. This book also contains a wealth of information for scientists and engineers interested in mathematical modelling and simulations related to nanoindentation testing and analysis.
1. Auflage
  • Englisch
  • Newark
  • |
  • Großbritannien
John Wiley & Sons
  • 44,83 MB
978-1-119-08451-8 (9781119084518)
1119084512 (1119084512)
weitere Ausgaben werden ermittelt
Editors:
Dr. Atul Tiwari is the Fellow of The Royal Society of Chemistry, UK and currently serves as President, Flora Coatings Company. in Phoenix, USA. Previously, Dr. Tiwari has served as a research faculty member in the Department of Mechanical Engineering at the University of Hawaii, USA. He has achieved double subject majors, in Organic Chemistry as well as Mechanical Engineering. He has also received Ph.D. in Polymer Materials Science along with the earned Chartered Chemist and Chartered Scientiststatus from the Royal Society of Chemistry, UK.
Dr. Sridhar Natarajan is currently the Chief Medical Examiner/Director at Lubbock County Medical Examiner's Office, Lubbock, Texas. He was a Colonel, Medical Corp in the United States Army Reserves (Retired) and is a former United Stated Navy Nuclear Submarine Officer Gold Dolphin Insignia.
  • Cover
  • Title Page
  • Copyright
  • Contents
  • List of Contributors
  • Preface
  • Part I
  • Chapter 1 Determination of Residual Stresses by Nanoindentation
  • 1.1 Introduction
  • 1.2 Theoretical Background
  • 1.3 Determination of Residual Stresses
  • 1.3.1 Low Hardening Materials and Equi-biaxial Stresses
  • 1.3.2 General Residual Stresses
  • 1.3.3 Strain-hardening Effects
  • 1.3.4 Conclusions and Remarks
  • References
  • Chapter 2 Nanomechanical Characterization of Carbon Films
  • 2.1 Introduction
  • 2.1.1 Types of DLC Coatings and their Mechanical Properties
  • 2.1.2 Carbon Films Processing Methods
  • 2.1.3 Residual Stresses in Carbon Films
  • 2.1.4 Friction Properties of Carbon Films
  • 2.1.5 Multilayering Strategies
  • 2.1.6 Applications of Carbon Films
  • 2.1.7 Optimization/testing Challenges
  • 2.2 Factors Influencing Reliable and Comparable Hardness and Elastic Modulus Determination
  • 2.2.1 The International Standard for Depth-sensing Indentation: EN ISO 14577-4 : 2007
  • 2.2.2 Challenges in Ultra-thin Films
  • 2.2.3 Indenter Geometry
  • 2.2.4 Surface Roughness
  • 2.3 Deformation in Indentation Contact
  • 2.3.1 The Relationship Between H/E and Plastic and Elastic Work in Nanoindentation
  • 2.3.2 Variation in H/E and Plasticity Index for Different DLC Films
  • 2.3.3 Cracking and Delamination
  • 2.3.4 Coatings on Si: Si Phase Transformation
  • 2.4 Nano-scratch Testing
  • 2.4.1 Scan Speed and Loading Rate
  • 2.4.2 Influence of Probe Radius
  • 2.4.3 Contact Pressure
  • 2.4.4 Role of the Si Substrate in Nano-scratch Testing
  • 2.4.5 Failure Behaviour of ta-C on Si
  • 2.4.6 Film Stress and Thickness
  • 2.4.7 Repetitive Nano-wear by Multi-pass Nano-scratch Tests
  • 2.4.8 Load Dependence of Friction
  • 2.5 Impact and Fatigue Resistance of DLC Films Using Nano-impact Testing
  • 2.5.1 Compositionally Graded a-C and a-C:H Coatings on M42 Tool Steel
  • 2.5.2 DLC/Cr Coating on Steel
  • 2.5.3 PACVD a-C:H Coatings on M2 Steel
  • 2.5.4 DLC Films on Si-film Thickness, Probe Geometry, Impact Force and Interfacial Toughness
  • 2.6 Wear Resistance of Amorphous Carbon Films Using Nano-fretting Testing
  • 2.6.1 Nano-fretting: State-of-the-art
  • 2.6.2 Nano-fretting of Thin DLC Films on Si
  • 2.6.3 Nano-fretting of DLC Coatings on Steel
  • 2.7 Conclusion
  • References
  • Chapter 3 Mechanical Evaluation of Nanocoatings under Extreme Environments for Application in Energy Systems
  • 3.1 Introduction
  • 3.2 Thermal Barrier Coatings
  • 3.2.1 Nanoindentation Characterization of TBCs
  • 3.2.2 Mechanical Properties of Hafnium-based TBCs
  • 3.3 Nanoindentation Evaluation of Coatings for Nuclear Power Generation Applications
  • 3.3.1 Evaluation of W-based Materials for Nuclear Application
  • 3.4 Conclusions and Outlook
  • Acknowledgments
  • References
  • Chapter 4 Evaluation of the Nanotribological Properties of Thin Films
  • 4.1 Introduction
  • 4.2 Evaluation Methods of Nanotribology
  • 4.3 Nanotribology Evaluation Methods and Examples
  • 4.3.1 Nanoindentation Evaluation
  • 4.3.2 Nanowear and Friction Evaluation
  • 4.3.2.1 Nanowear Properties
  • 4.3.2.2 Frictional Properties with Different Lubricants
  • 4.3.2.3 Nanowear and Frictional Properties, Evaluated with and without Vibrations
  • 4.3.3 Evaluation of the Force Modulation
  • 4.3.4 Evaluation of the Mechanical and Other Physical Properties
  • 4.4 Conclusions
  • References
  • Chapter 5 Nanoindentation on Tribological Coatings
  • 5.1 Introduction
  • 5.2 Relevant Properties on Coatings for Tribological Applications
  • 5.3 How can Nanoindentation Help Researchers to Characterize Coatings?
  • 5.3.1 Thin Coatings Nanoindentation Procedures
  • 5.3.2 Hardness Determination
  • 5.3.3 Young's Modulus Determination
  • 5.3.4 Tensile Properties Determination
  • 5.3.5 Fracture Toughness in Thin Films
  • 5.3.6 Coatings Adhesion Analysis
  • 5.3.7 Stiffness and Other Mechanical Properties
  • 5.3.8 Simulation and Models Applied to Nanoindentation
  • References
  • Chapter 6 Nanoindentation of Macro-porous Materials for Elastic Modulus and Hardness Determination
  • 6.1 Introduction
  • 6.1.1 Nanoindentation Fundamentals for Dense Materials
  • 6.1.2 Introduction to Porous Materials
  • 6.1.3 Studies of Elastic Properties of Porous Materials
  • 6.2 Nanoindentation of Macro-porous Bulk Ceramics
  • 6.3 Nanoindentation of Bone Materials
  • 6.4 Nanoindentation of Macro-porous Films
  • 6.4.1 Substrate Effect
  • 6.4.2 Densification Effect
  • 6.4.3 Surface Roughness Effect
  • 6.5 Concluding Remarks
  • Acknowledgements
  • References
  • Chapter 7 Nanoindentation Applied to DC Plasma Nitrided Parts
  • 7.1 Introduction
  • 7.2 Basic Aspects of DC Plasma Nitrided Parts
  • 7.2.1 The Potential Distribution for an Abnormal Glow Discharge
  • 7.2.2 Plasma-surface Interaction in Cathode Surface
  • 7.2.3 Electrical Configuration Modes in DC Plasma Nitriding
  • 7.3 Basic Aspects of Nanoindentation in Nitrided Surfaces
  • 7.4 Examples of Nanoindentation Applied to DC Plasma Nitrided Parts
  • 7.4.1 Mechanical Polishing: Nanoindentation in Niobium
  • 7.4.2 Surface Roughness: Nanoindentation in DC Plasma Nitrided Parts
  • 7.4.2.1 Nanoindentation in DC Plasma Nitrided Niobium
  • 7.4.2.2 Nanoindentation in DC Plasma Nitrided Titanium
  • 7.4.2.3 Nanoindentation in DC Plasma Nitrided Martensitic Stainless Steel
  • 7.4.3 Nitrogen-concentration Gradients: Nanoindentation in DC Plasma Nitrided Tool Steel
  • 7.4.4 Crystallographic Orientation: Nanoindentation in DC Plasma Nitrided Austenitic Stainless Steels
  • 7.5 Conclusion
  • Acknowledgements
  • References
  • Chapter 8 Nanomechanical Properties of Defective Surfaces
  • 8.1 Introduction
  • 8.1.1 The Role of Surface Defects in Plasticity
  • 8.1.2 Experimental Techniques for Visualization and Generation of Surface Defects
  • 8.1.3 Approaches to Study and Probe Nanomechanical Properties
  • 8.2 Homogeneous and Heterogeneous Dislocation Nucleation
  • 8.2.1 Homogeneous Dislocation Nucleation
  • 8.2.2 Heterogeneous Dislocation Nucleation
  • 8.3 Surface Steps
  • 8.3.1 Studies on Surface Steps
  • 8.4 Subsurface Defects
  • 8.4.1 Sub-surface Vacancies
  • 8.4.2 Sub-surface Impurities and Dislocations
  • 8.5 Rough Surfaces
  • 8.6 Conclusions
  • Acknowledgements
  • References
  • Chapter 9 Viscoelastic and Tribological Behavior of Al2O3 Reinforced Toughened Epoxy Hybrid Nanocomposites
  • 9.1 Introduction
  • 9.2 Experimental
  • 9.2.1 Materials
  • 9.2.2 FTIR Analysis
  • 9.2.3 Results and Discussion
  • 9.2.3.1 Viscoeleastic Properties
  • 9.2.3.2 Hardness and Modulus by Nanoindentation
  • 9.3 Conclusion
  • References
  • Chapter 10 Nanoindentation of Hybrid Foams
  • 10.1 Introduction
  • 10.1.1 Motivation
  • 10.1.2 State of the art of Nanoindentation of Metal and Metal Foam
  • 10.2 Sample Material and Preparation
  • 10.2.1 Al Material and Coating Process
  • 10.2.2 Sample Preparation for Nanoindentation
  • 10.3 Nanoindentation Experiments
  • 10.3.1 Experimental Setup
  • 10.3.2 Results and Discussion
  • 10.4 Conclusions and Outlook
  • Acknowledgements
  • References
  • Chapter 11 AFM-based Nanoindentation of Cellulosic Fibers
  • 11.1 Introduction
  • 11.2 Experimental
  • 11.2.1 AFM Instrumentation
  • 11.2.2 AFM-based Nanoindentation
  • 11.2.3 Comparison with Results of Classical NI
  • 11.2.4 Sample Preparation
  • 11.3 Mechanical Properties of Cellulose Fibers
  • 11.3.1 Pulp Fibers
  • 11.3.2 Swollen Viscose Fibers
  • 11.4 Conclusions and Outlook
  • Acknowledgments
  • References
  • Chapter 12 Evaluation of Mechanical and Tribological Properties of Coatings for Stainless Steel
  • 12.1 Introduction
  • 12.2 Experimental Details
  • 12.3 Results and Discussion
  • 12.3.1 Crystal Lattice Arrangement of -TCP/Ch Coatings
  • 12.3.2 Surface Coating Analysis
  • 12.3.3 Morphological Analysis of the -TCP-Ch Coatings
  • 12.3.4 Mechanical Properties
  • Hardness and elastic modulus
  • 12.3.5 Tribological Properties
  • Pin-On-Disk Analysis
  • 12.3.6 Surface Wear Analysis
  • 12.3.7 Adhesion Behaviour
  • 12.4 Conclusions
  • Acknowledgements
  • References
  • Chapter 13 Nanoindentation in Metallic Glasses
  • 13.1 Introduction
  • 13.1.1 Motivation
  • 13.1.2 Nanoindentation Studies of Metallic Glasses
  • 13.1.2.1 Pile-up and Sink-in
  • 13.1.2.2 Indentation Size Effect
  • 13.2 Experimental Studies
  • 13.2.1 Nano Test Platform III Indentation System
  • 13.2.2 Calibration
  • 13.2.2.1 Frame Compliance
  • 13.2.2.2 Cross-hair Calibration
  • 13.2.2.3 Indenter Area Function
  • 13.2.3 Experimental Procedure
  • 13.2.4 Results and Discussion
  • 13.3 Conclusions
  • References
  • Part II
  • Chapter 14 Molecular Dynamics Modeling of Nanoindentation
  • 14.1 Introduction
  • 14.2 Methods
  • 14.2.1 The Indentation Tip
  • 14.2.2 Control Methods Used in Experiment and in MD Simulations
  • 14.2.3 Penetration Rate
  • 14.3 Interatomic Potentials
  • 14.3.1 Elastic Constants
  • 14.3.2 Generalized Stacking Fault Energies
  • 14.4 Elastic Regime
  • 14.5 The Onset of Plasticity
  • 14.5.1 Evolution of the Dislocation Network
  • 14.5.2 Contact Area and Hardness
  • 14.5.3 Indentation Rate Effect
  • 14.5.4 Tip Diameter Effect
  • 14.6 The Plastic Zone: Dislocation Activity
  • 14.6.1 Face-centered Cubic Metals
  • 14.6.2 Body-centered Cubic Metals
  • 14.6.3 Quantification of Dislocation Length and Density
  • 14.6.4 Pile-up
  • 14.6.5 Geometrically-necessary Dislocations and the Identification of Intrinsic Length-scales from Hardness Simulations
  • 14.7 Outlook
  • Acknowledgements
  • References
  • Chapter 15 Continuum Modelling and Simulation of Indentation in Transparent Single Crystalline Minerals and Energetic Solids
  • 15.1 Introduction
  • 15.2 Theory: Material Modelling
  • 15.2.1 General Multi-field Continuum Theory
  • 15.2.2 Crystal Plasticity Theory
  • 15.2.3 Phase Field Theory for Twinning
  • 15.3 Application: Indentation of RDX Single Crystals
  • 15.3.1 Review of Prior Work
  • 15.3.2 New Results and Analysis
  • 15.4 Application: Indentation of Calcite Single Crystals
  • 15.4.1 Review of Prior Work
  • 15.4.2 New Results and Analysis
  • 15.5 Conclusions
  • Acknowledgements
  • References
  • Chapter 16 Nanoindentation Modeling: From Finite Element to Atomistic Simulations
  • 16.1 Introduction
  • 16.2 Scaling and Dimensional Analysis Applied to Indentation Modelling
  • 16.2.1 Geometrical Similarity of Indenter Tips
  • 16.2.2 Dimensional Analysis
  • 16.2.3 Dimensional Analysis Applied to Extraction of Mechanical Properties
  • 16.3 Finite Element Simulations of Advanced Materials
  • 16.3.1 Nanocrystalline Porous Materials and Pressure-sensitive Models
  • 16.3.2 Finite Element Simulations of 1D Structures: Nanowires
  • 16.3.3 Continuum Crystal Plasticity Finite Element Simulations: Nanoindentation of Thin Solid Films
  • 16.4 Nucleation and Interaction of Dislocations During Single Crystal Nanoindentaion: Atomistic Simulations
  • 16.4.1 Dislocation Dynamics Simulations
  • 16.4.2 Molecular Dynamics Simulations
  • References
  • Chapter 17 Nanoindentation in silico of Biological Particles
  • 17.1 Introduction
  • 17.2 Computational Methodology of Nanoindentation in silico
  • 17.2.1 Molecular Modelling of Biological Particles
  • 17.2.2 Coarse-graining: Self-organized Polymer (SOP) Model
  • 17.2.3 Multiscale Modeling Primer: SOP Model Parameterization for Microtubule Polymers
  • 17.2.4 Using Graphics Processing Units as Performance Accelerators
  • 17.2.5 Virtual AFM Experiment: Forced Indentation in silico of Biological Particles
  • 17.3 Biological Particles
  • 17.3.1 Cylindrical Particles: Microtubule Polymers
  • 17.3.2 Spherical Particles: CCMV Shell
  • 17.4 Nanoindentation in silico: Probing Reversible Changes in Near-equilibrium Regime
  • 17.4.1 Probing Reversible Transitions
  • 17.4.2 Studying Near-equilibrium Dynamics
  • 17.5 Application of in silico Nanoindentation: Dynamics of Deformation of MT and CCMV
  • 17.5.1 Long Polyprotein - Microtubule Protofilament
  • 17.5.2 Cylindrical Particle - Microtubule Polymer
  • 17.5.3 Spherical Particle - CCMV Protein Shell
  • 17.6 Concluding Remarks
  • References
  • Chapter 18 Modeling and Simulations in Nanoindentation
  • 18.1 Introduction
  • 18.2 Simulations of Nanoindention on Polymers
  • 18.2.1 Models and Simulation Methods
  • 18.2.2 Load-displacement Responses
  • 18.2.3 Hardness and Young's Modulus
  • 18.2.4 The Mechanism of Mechanical Behaviours and Properties
  • 18.3 Simulations of Nanoindention on Crystals
  • 18.3.1 Models and Simulation Methods
  • 18.3.2 The Load-displacement Responses
  • 18.3.3 Dislocation Nucleation
  • 18.3.4 Mechanism of Dislocation Emission
  • 18.4 Conclusions
  • Acknowledgments
  • References
  • Chapter 19 Nanoindentation of Advanced Ceramics: Applications to ZrO2 Materials
  • 19.1 Introduction
  • 19.2 Indentation Mechanics
  • 19.2.1 Deformation Mechanics
  • 19.2.2 Elastic Contact
  • 19.2.3 Elasto/plastic Contact
  • 19.3 Fracture Toughness
  • 19.4 Coatings
  • 19.4.1 Coating Hardness
  • 19.4.2 Coating Elastic Modulus
  • 19.5 Issues for Reproducible Results
  • 19.6 Applications of Nanoindentation to Zirconia
  • 19.6.1 Hardness and Elastic Modulus
  • 19.6.2 Stress-strain Curve and Phase Transformation
  • 19.6.3 Plastic Deformation Mechanisms
  • 19.6.4 Mechanical Properties of Damaged Surfaces
  • 19.6.5 Relation Between Microstructure and Local Mechanical Properties by Massive Nanoindentation Cartography
  • 19.7 Conclusions
  • Acknowledgements
  • References
  • Chapter 20 FEM Simulation of Nanoindentation
  • 20.1 Introduction
  • 20.2 Indentation of Isotropic Materials
  • 20.3 Indentation of Thin Films
  • 20.4 Indentation of a Hard Phase Embedded in Matrix
  • References
  • Chapter 21 Investigations Regarding Plastic Flow Behaviour and Failure Analysis on CrAlN Thin Hard Coatings
  • 21.1 Introduction
  • 21.2 Description of the Method
  • 21.2.1 Flow Curve Determination
  • 21.2.1.1 Nanoindentation Step
  • 21.2.1.2 Yield Strength Determination
  • 21.2.1.3 Flow Curve Determination by Iterative Simulation
  • 21.2.1.4 Determination of Strain Rate and Temperature Dependency
  • 21.2.2 Failure Criterion Determination with Nano-scratch Analysis
  • 21.3 Investigations into the CrAlN Coating System
  • 21.3.1 Flow curve dependency on chemical composition and microstructure
  • 21.3.2 Strain Rate Dependency of Different CrN-AlN Coating Systems
  • 21.3.3 Failure criterion determination on a CrN/AlN nanolaminate
  • 21.4 Concluding Remarks
  • References
  • Chapter 22 Scale Invariant Mechanical Surface Optimization
  • 22.1 Introduction
  • 22.1.1 Interatomic Potential Description of Mechanical Material Behavior
  • 22.1.2 The Effective Indenter Concept and Its Extension to Layered Materials
  • 22.1.3 About Extensions of the Oliver and Pharr Method
  • 22.1.3.1 Making the Classical Oliver and Pharr Method Fit for Time Dependent Mechanical Behavior
  • 22.1.4 Introduction to the Physical Scratch and/or Tribological Test and its Analysis
  • 22.1.5 Illustrative Hypothetical Example for Optimization Against Dust Impact
  • 22.1.6 About the Influence of Intrinsic Stresses
  • 22.2 Theory
  • 22.2.1 First Principle Based Interatomic Potential Description of Mechanical Material Behavior
  • 22.2.2 The Effective Indenter Concept
  • 22.2.3 An Oliver and Pharr Method for Time Dependent Layered Materials
  • 22.2.4 Theory for the Physical Scratch and/or Tribological Test
  • 22.2.5 From Quasi-Static Experiments and Parameters to Dynamic Wear, Fretting and Tribological Tests
  • 22.2.6 Including Biaxial Intrinsic Stresses
  • 22.3 The Procedure
  • 22.4 Discussion by Means of Examples
  • 22.5 Conclusions
  • Acknowledgements
  • Referencess
  • Chapter 23 Modelling and Simulations of Nanoindentation in Single Crystals
  • 23.1 Introduction
  • 23.2 Review of Indentation Modelling
  • 23.3 Crystal Plasticity Modelling of Nanoindentation
  • 23.3.1 Indentation of F.C.C. Copper Single Crystal
  • 23.3.2 Indentation of B.C.C. Ti-64
  • 23.3.3 Indentation of B.C.C. Ti-15-3-3
  • 23.4 Conclusions
  • References
  • Chapter 24 Computer Simulation and Experimental Analysis of Nanoindentation Technique
  • 24.1 Introduction
  • 24.2 Finite Element Simulation for Nanoindentation
  • 24.3 Finite Element Modeling
  • 24.3.1 Geometry
  • 24.3.2 Material Characteristics
  • 24.3.3 Boundary Condition
  • 24.3.4 Interaction
  • 24.3.5 Meshing
  • 24.4 Verification of Finite Element Simulation
  • 24.4.1 Nanoindentation Experiment on Al 1100
  • 24.4.2 Comparison Between Simulation and Experimental Results for Al 1100
  • 24.4.2.1 Load-displacement
  • 24.4.2.2 Hardness
  • 24.5 Molecular Dynamic Modeling for Nanoindentation
  • 24.5.1 Simulation Procedure
  • 24.6 Results of Molecular Dynamic Simulation
  • 24.7 Conclusions
  • References
  • Chapter 25 Atomistic Simulations of Adhesion, Indentation and Wear at the Nanoscale
  • 25.1 Introduction
  • 25.2 Methodologies
  • 25.2.1 Density Functional Theory
  • 25.2.1.1 The Exchange-correlation Functional
  • 25.2.1.2 Plane Waves and Supercell
  • 25.2.2 Pseudopotential Approximation
  • 25.2.3 Molecular Dynamics
  • 25.2.3.1 Equations of Motion
  • 25.2.3.2 Algorithms
  • 25.2.3.3 Statistical Ensembles
  • 25.2.3.4 Interatomic Potentials
  • 25.2.3.5 Ab initio Molecular Dynamics
  • 25.2.4 Some Commercial Software
  • 25.2.4.1 The VASP
  • 25.2.4.2 The LAMMPS
  • 25.3 Density Functional Study of Adhesion at the Metal/Ceramic Interfaces
  • 25.3.1 Calculations
  • 25.3.2 Effect of Surface Energies in the Wsep
  • 25.3.3 Conclusions
  • 25.4 Molecular Dynamics Simulations of Nanoindentation
  • 25.4.1 Empirical Modeling
  • 25.4.1.1 Modeling Geometry and Simulation Procedures
  • 25.4.1.2 Results and discussions
  • 25.4.1.3 Conclusions
  • 25.4.2 Ab initio Modeling
  • 25.4.2.1 Modeling Geometry and Simulation Procedures
  • 25.4.2.2 Results and Discussions
  • 25.5 Molecular Dynamics Simulations of Adhesive Wear on the Al-substrate
  • 25.5.1 Modeling Geometry and Simulation Procedures
  • 25.5.2 Results and Discussions
  • 25.5.2.1 One Common Wear Sequence
  • 25.5.2.2 Thermal Analysis for the Wear Sequence
  • 25.5.2.3 Wear Rate Analyses
  • 25.6 Summary and Prospect
  • Acknowledgments
  • References
  • Chapter 26 Multiscale Model for Nanoindentation in Polymer and Polymer Nanocomposites
  • 26.1 Introduction
  • 26.2 Modeling Scheme
  • 26.2.1 Details of the MD Simulation
  • 26.3 Nanoindentation Test
  • 26.4 Theoretically and Experimentally Determined Result
  • 26.5 Multiscale of Complex Heterogeneous Materials
  • 26.5.1 Introduction to Peridynamics
  • 26.5.2 Nonlocal Multiscale Modeling using Peridynamics: Linking Macro- to Nano-scales
  • 26.6 Multiscale Modeling for Nanoindentation in Epoxy: EPON 862
  • 26.7 Unified Theory for Multiscale Modeling
  • 26.8 Conclusion
  • References
  • Index
  • EULA

List of Contributors


  1. James B. Adams
  2. President's Professor
  3. Materials Science and Engineering Program
  4. School for Engineering of Matter
  5. Transport and Energy
  6. Arizona State University
  7. Tempe, AZ 85287, USA

 

  1. W. Aperador
  2. Department of Engineering, Universidad Militar Nueva Granada
  3. Bogotá, Colombia

 

  1. M.R. Ayatollahi
  2. Fatigue and Fracture Laboratory
  3. Center of Excellence in Experimental Solid Mechanics and Dynamics
  4. School of Mechanical Engineering
  5. Iran University of Science and Technology
  6. Narmak
  7. Tehran, 16846, Iran

 

  1. B.B. Aydelotte
  2. Lethal Mechanisms
  3. RDRL-WML-H
  4. US ARL, APG
  5. MD 21005-5066
  6. USA

 

  1. Valeri Barsegov
  2. Department of Chemistry
  3. University of Massachusetts
  4. Lowell, MA 01854
  5. USA

 

  1. Ben D. Beake
  2. Micro Materials Ltd.
  3. Willow House, Ellice Way
  4. Yale Business Village
  5. Wrexham
  6. LL13 7YL, UK

 

  1. R. Becker
  2. Impact Physics
  3. RDRL-WMP-C, US ARL
  4. APG, MD 21005-5066
  5. USA

 

  1. E. M. Bringa
  2. Facultad de Ciencias Exactas y Naturales
  3. Univ. Nac. de Cuyo - CONICET
  4. Mendoza 5500
  5. Argentina

 

  1. Silvio Francisco Brunatto
  2. Plasma Assisted Manufacturing Technology & Powder Metallurgy Group
  3. Department of Mechanical Engineering
  4. Universidade Federal do Paraná, Curitiba
  5. Paraná, Brazil
  6. e-mail: brunatto@ufpr.br

 

  1. H.H. Caicedo
  2. Department of Anatomy and Cell Biology, University of Illinois at Chicago USA and National Biotechnology and Pharmaceutical Association, Chicago USA

 

  1. J.C. Caicedo
  2. Tribology, Powder Metallurgy and Processing of Solid Recycled Research Group
  3. Universidad del Valle, Cali, Colombia

 

  1. Zhangwei Chen
  2. Department of Earth Science and Engineering
  3. Royal School of Mines Building
  4. Imperial College London
  5. South Kensington, London
  6. SW7 2BP, UK

 

  1. Zhaoyu Chen
  2. Applied Mechanics
  3. Saarland University
  4. Geb. A4.2, 66123 Saarbrücken
  5. Germany
  6. e-mail: zh.chen@mx.uni-saarland.de

 

  1. J.D. Clayton
  2. Impact Physics
  3. RDRL-WMP-C, US ARL
  4. APG, MD 21005-5066
  5. USA

 

  1. Murat Demiral
  2. Department of Mechanical Engineering
  3. Çankaya University
  4. Ankara 06790
  5. Turkey

 

  1. Stefan Diebels
  2. Applied Mechanics
  3. Saarland University
  4. Geb. A4.2, 66123 Saarbrücken
  5. Germany
  6. e-mail: s.diebels@mx.uni-saarland.de

 

  1. Daniel Esqué-de los Ojos
  2. Doctor, Departament de Física
  3. Universitat Autònoma de Barcelona
  4. Facultat de Ciències
  5. E-08193 Bellaterra, Spain

 

  1. Christian Ganser
  2. Institute of Physics
  3. Montanuniversitaet Leoben
  4. 8700 Leoben, Austria

 

  1. Y. Gao
  2. Physics Department and Research Center OPTIMAS
  3. University Kaiserslautern
  4. Kaiserslautern, 67663
  5. Germany

 

  1. Marc J. Anglada Gomila
  2. Universitat Politècnica de Catalunya
  3. CIEFMA, Campus Diagonal Besòs - Edif. DBI, Av. d'Eduard Maristany
  4. 10-14, 08019 Barcelona
  5. Spain
  6. and
  7. Universitat Politècnica de Catalunya
  8. Research Center in Multiscale Science and Engineering
  9. Campus Diagonal Besòs - Edif. DBC
  10. Av. d'Eduard Maristany
  11. 10-14, 08019 Barcelona
  12. Spain

 

  1. S.K. Gullapalli
  2. Department of Mechanical Engineering
  3. University of Texas at El Paso
  4. El Paso, Texas 79968, USA

 

  1. Louis G. Hector, Jr.
  2. Senior Research Scientist
  3. Materials and Processes Laboratory
  4. General Motor R&D Center
  5. Warren
  6. Michigan 48090-9055, USA

 

  1. C.D. Hilton
  2. Oak Ridge Institute for Science and Education
  3. US ARL, APG, MD 21005-5069
  4. USA

 

  1. S. Huth
  2. Dr.-Ing., Hilti Corporation
  3. 9494 Schaan
  4. Liechtenstein

 

  1. Anne Jung
  2. Applied Mechanics
  3. Saarland University
  4. Geb. A4.2, 66123 Saarbrücken
  5. Germany
  6. e-mail: anne.jung@mx.uni-saarland.de

 

  1. A. Karimzadeh
  2. Fatigue and Fracture Laboratory
  3. Center of Excellence in Experimental Solid Mechanics and Dynamics
  4. School of Mechanical Engineering
  5. Iran University of Science and Technology
  6. Narmak
  7. Tehran, 16846, Iran

 

  1. J. Knap
  2. Computational Sciences
  3. RDRL-CIH-C, US ARL
  4. APG, MD 21005-5066
  5. USA

 

  1. Olga Kononova
  2. Department of Chemistry
  3. University of Massachusetts
  4. Lowell, MA 01854
  5. USA
  6. and
  7. Division of Applied Mathematics
  8. Moscow Institute of Physics andTechnology
  9. Moscow region, 141700
  10. Russia

 

  1. P.-L. Larsson
  2. Department of Solid Mechanics
  3. Royal Institute of Technology
  4. Teknikringen 8 D
  5. SE-10044, Stockholm
  6. Sweden
  7. e-mail: plla@kth.se

 

  1. Carlos Maurício Lepienski
  2. Department of Physics
  3. Universidade Federal do Paraná, Curitiba
  4. Paraná, Brazil
  5. e-mail: lepiensm@física.ufpr.br

 

  1. Tomasz W. Liskiewicz
  2. Institute of Functional Surfaces
  3. School of Mechanical Engineering
  4. University of Leeds
  5. Woodhouse Lane, Leeds
  6. LS2 9JT, UK

 

  1. Qiang Liu
  2. Wolfson School of Mechanical, Electrical and Manufacturing Engineering Loughborough University
  3. LE11 3TU, UK

 

  1. G. Martinez
  2. Department of Mechanical Engineering
  3. University of Texas at El Paso
  4. El Paso, Texas 79968, USA

 

  1. Kenneth A. Marx
  2. Department of Chemistry
  3. University of Massachusetts
  4. Lowell, MA 01854
  5. USA

 

  1. A. Mina
  2. Tribology, Powder Metallurgy and Processing of Solid Recycled Research Group
  3. Universidad del Valle, Cali, Colombia

 

  1. Shojiro Miyake
  2. Dr, Nippon Institute of Technology
  3. Miyashiro-machi
  4. Saitama 345-8501
  5. Japan

 

  1. Mandhakini Mohandas
  2. Centre for Nanoscience and Technology
  3. Anna University
  4. Chennai 25, India

 

  1. M. Mozafari
  2. Bioengineering Research Group Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran

 

  1. Alagar Muthukaruppan
  2. Polymer Composite Lab Departnment of Chemical Engineering
  3. Anna University
  4. Chennai 25, India

 

  1. Vahid Nekouie
  2. Wolfson School of Mechanical, Electrical and Manufacturing Engineering
  3. Loughborough University
  4. Leicestershire, UK

 

  1. M. Noor-A-Alam
  2. Department of Mechanical Engineering
  3. University of Texas at El Paso
  4. El Paso, Texas 79968, USA

 

  1. Jan Perne
  2. RWTH Aachen University
  3. Templergraben 55, 52056 Aachen
  4. Germany

 

  1. Emilio Jiménez Piqué
  2. Universitat Politècnica de Catalunya
  3. CIEFMA, Campus Diagonal Besòs - Edif. DBI, Av. d'Eduard Maristany
  4. 10-14, 08019 Barcelona
  5. Spain
  6. and
  7. Universitat Politècnica de Catalunya
  8. Research Center in Multiscale Science and Engineering, Campus Diagonal Besòs - Edif. DBC, Av. d'Eduard Maristany
  9. 10-14, 08019 Barcelona
  10. Spain

 

  1. F. Pöhl
  2. Dr.-Ing., Ruhr-Universität Bochum
  3. Universitätsstr.150 44801 Bochum
  4. Germany

 

  1. A. Rahimi
  2. Fatigue and Fracture Laboratory
  3. Center of Excellence in Experimental Solid Mechanics and...

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

132,99 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok