Design and Applications of Nanostructured Polymer Blends and Nanocomposite Systems

 
 
William Andrew (Verlag)
  • 1. Auflage
  • |
  • erschienen am 22. September 2015
  • |
  • 442 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-323-39454-3 (ISBN)
 

Design and Applications of Nanostructured Polymer Blend and Nanocomposite Systems offers readers an intelligent, thorough introduction to the design and applications of this new generation of designer polymers with customized properties. The book assembles and covers, in a unified way, the state-of-the-art developments of this less explored type of material.

With a focus on nanostructured polymer blends, the book discusses the science of nanostructure formation and the potential performance benefits of nanostructured polymer blends and composites for applications across many sectors: electronics, coatings, adhesives, energy (photovoltaics), aerospace, automotive, and medical devices (biocompatible polymers). The book also describes the design, morphology, and structure of nanostructured polymer composites and blends to achieve specific properties.


  • Covers all important information for designing and selecting the right nanostructured polymer system
  • Provides specialized knowledge on self-repairing, nanofibre and nanostructured multiphase materials, as well as evaluation and testing of nanostructured polymer systems
  • Serves as a reference guide for development of new products in industries ranging from electronics, coatings, and energy, to transport and medical applications
  • Describes the design, morphology, and structure of nanostructured polymer composites and blends to achieve specific properties
  • Englisch
  • USA
Elsevier Science
  • 26,44 MB
978-0-323-39454-3 (9780323394543)
032339454X (032339454X)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Design and Applications of Nanostructured Polymer Blends and Nanocomposite Systems
  • Copyright
  • Contents
  • Contributors
  • Chapter 1: Thermoset-Thermoplastic Nanostructured Blends
  • 1.1 Introduction
  • 1.2 Cure in Thermosetting
  • 1.3 Phase Separation
  • 1.3.1 Identifying the Phase Separation
  • 1.3.2 Nanoreinforcement and Phase Separation
  • 1.4 Thermoset/ Thermoplastic Blends Applications
  • 1.5 Summary
  • Acknowledgments
  • References
  • Chapter 2: Thermoplastic-Thermoset Nanostructured Polymer Blends
  • 2.1 Introduction
  • 2.2 Polymer Blends
  • 2.2.1 Types of Polymer Blends
  • 2.2.1.1 Homologous Polymer Blend
  • 2.2.1.2 Miscible Polymer Blend
  • 2.2.1.3 Immiscible Polymer Blend
  • 2.2.1.4 Compatible Polymer Blend
  • 2.2.1.5 Polymer Alloy
  • 2.3 Thermoplastics/Thermosets Blends in a Thermoplastic Matrix
  • 2.4 Phase Separation
  • 2.4.1 Compatibilization
  • 2.5 Curing
  • 2.6 Preparation of Nanostructured Thermoplastic/Thermoset Blends
  • 2.6.1 Melt Extrusion
  • 2.6.2 Higher Shear Processing
  • 2.6.3 Physical Blending
  • 2.6.4 Reactive blending
  • 2.7 Introduction of Nanoparticles
  • 2.8 Morphology Development
  • 2.9 Properties
  • 2.10 Conclusion and Recommendation
  • References
  • Chapter 3: Liquid Crystalline Nanostructured Polymer Blends
  • 3.1 Introduction
  • 3.2 Liquid Crystalline Mesophases
  • 3.3 Molecular Structures of Polymer Liquid Crystals
  • 3.4 Properties and Applications of Polymer Liquid Crystal Blends
  • 3.5 Characterization Methods
  • 3.6 Final Remarks
  • References
  • Chapter 4: Thermoplastics Polymers Reinforced with Natural Fibers
  • 4.1 Introduction
  • 4.2 Natural Fibers
  • 4.3 Palm Fibers
  • 4.4 Effect of Modification on Mechanical Properties of Palm Fiber Composites
  • 4.4.1 Alkali Treatment
  • 4.4.2 Use of a Coupling Agent
  • Acknowledgment
  • References
  • Chapter 5: Aerogels and Foamed Nanostructured Polymer Blends
  • 5.1 Introduction
  • 5.2 Foaming of Nanostructured Blend Systems
  • 5.2.1 Synthesis of Nanostructured Foamed Polymer Blends
  • 5.2.1.1 Nanocomposite Synthesis
  • 5.2.1.2 Synthesis of Thermoplastic Nanocomposite Blends
  • 5.2.1.3 Synthesis of Foamed Nanopolymer Blends by Solid-State Foaming
  • 5.2.1.4 Synthesis of Thermoset Nanocomposite Foams
  • 5.2.1.5 High Performance Polymer-Based Nanocomposite Foams
  • 5.2.1.6 Biodegradable Polymer-Based Nanocomposite Foams
  • 5.2.2 Foam Morphology
  • 5.2.2.1 Factors That Influence Morphology
  • 5.2.3 Properties of Nanopolymer Foamed Blends
  • 5.2.3.1 Mechanical Properties
  • 5.2.3.2 Acoustic Properties
  • 5.2.3.3 Electrical Properties
  • 5.2.3.4 Thermal Insulation Properties
  • 5.2.3.5 Thermal Stability
  • 5.2.3.6 Biocompatibility
  • 5.3 Aerogel Polymer Blends
  • 5.3.1 Aerogel
  • 5.3.2 Properties of Aerogels and Applications
  • 5.3.2.1 Properties
  • 5.3.2.2 Applications
  • 5.4 Conclusion
  • Acknowledgment
  • References
  • Chapter 6: Nanomembrane Materials Based on Polymer Blends
  • 6.1 Introduction to Nanomembrane Materials
  • 6.2 Current State of the Art on Polymeric Nanomembranes
  • 6.2.1 The Polymer Matrix
  • 6.2.2 Solution Diffusion Mechanism of Polymeric Nanomembranes
  • 6.2.3 Factors Contributing to the Transport Process of Polymeric Nanomembranes
  • 6.3 Concept of Mixed-Matrix Nanomembranes
  • 6.4 Development of Mixed-Matrix Nanomembranes
  • 6.4.1 Solid-Polymer Mixed-Matrix Nanomembranes
  • 6.4.1.1 Use of solid-polymer mixed-matrix nanomembranes for gas separation
  • 6.4.2 Liquid-Polymer MMMs
  • 6.4.3 Solid-Liquid-Polymer MMMs
  • 6.5 A Nano-Blend with the Nano-Phase Removed for Controlled Porosity
  • 6.6 Methods of Controlling the Pore Shape, Porosity and Size of Nanoporous Polymer Materials
  • 6.6.1 Electro-Spinning
  • 6.6.2 Gas Sorption
  • 6.6.3 Optical Methods
  • 6.6.4 Permeation Test
  • 6.7 Recent Progress in Mixed-Matrix Nanomembranes
  • 6.7.1 Nanomembrane Multi-Functionalization of Various Nanocomposites
  • 6.8 Summary
  • References
  • Chapter 7: Polymers with Nano-Encapsulated Functional Polymers
  • 7.1 Introduction
  • 7.2 Functional Polymer
  • 7.2.1 Conductive Polymer
  • 7.2.1.1 Polypyrrole
  • 7.2.1.2 Polythiophene
  • 7.2.1.3 Polyaniline
  • 7.2.2 Redox Polymer
  • 7.2.3 Functional Polymer Nanocomposites
  • 7.3 Encapsulation of Polymeric Nanoparticles
  • 7.3.1 Encapsulation via Heterogeneous Polymerization
  • 7.3.1.1 Emulsion polymerization
  • 7.3.1.2 Microemulsion polymerization
  • 7.3.1.3 Miniemulsion polymerization
  • 7.3.2 Encapsulation via Physical Chemistry Method
  • 7.3.2.1 Assembly of nanoparticles via heterocoagulation
  • 7.3.2.2 Assembly of nanoparticles via repetitive
  • 7.4 Application
  • 7.4.1 Phase Change Materials
  • 7.4.2 Electromagnetic Interference (EMI) Shielding Materials
  • 7.4.3 Biomedical Applications
  • 7.4.3.1 Drug delivery
  • 7.4.3.2 Fluorescence bioimaging
  • 7.5 Future Directions
  • 7.6 Conclusions
  • References
  • Chapter 8: Polymers with Nano-Encapsulated Functional Polymers: Encapsulated Phase Change Materials
  • 8.1 Introduction
  • 8.2 Classification of PCMs
  • 8.2.1 Inorganic Phase Change Compounds
  • 8.2.2 Organic Phase Change Compounds
  • 8.2.2.1 Commercial paraffin waxes (CnH 2n +2)
  • 8.2.2.2 Nonparaffin organics
  • 8.2.3 Eutectics
  • 8.3 Encapsulation of PCMs
  • 8.4 Nanoparticle-Enhanced PCM and Nano-Encapsulated PCM
  • 8.5 Literature Review
  • 8.6 Summary
  • References
  • Chapter 9: Polymers with Nano-Encapsulated Functional Polymers: Encapsulated Nanoparticles for Treatment of Cancer Cells
  • 9.1 Introduction
  • 9.2 NPs for Treatment of Cancer
  • 9.2.1 General Considerations
  • 9.2.2 Nanocarriers Based on Polymeric Materials
  • 9.2.2.1 Targeted delivery
  • 9.3 Nanostructures for Anticancer Therapeutics: Future Tendencies
  • 9.3.1 Anticancer Polymer Prodrug Nanocarriers
  • 9.4 Conclusions and Future Directions
  • References
  • Chapter 10: Carbon Containing Nanostructured Polymer Blends
  • 10.1 Introduction
  • 10.2 Different Categories of Carbon Nanostructure
  • 10.3 CNT and Graphene Reinforced Polymer Composite
  • 10.3.1 Relationship Between Processing, Structure, and Property of Polymer/CNTs Composite Materials
  • 10.3.1.1 The uses of CNTs as nucleating agent in polymer composite fibers
  • 10.3.1.2 Dispersion and structural control of CNTs
  • 10.3.1.3 Methods of homogeneous dispersion of carbon nanomaterials
  • 10.3.2 Relationship Between Preparation, Structure, and Property of Polymer/Graphene Composite Materials
  • 10.3.2.1 Exfoliated graphite fillers
  • 10.3.2.2 Structure of exfoliated graphite
  • 10.4 Graphenated CNTs
  • 10.5 Current Applications of CNTs and Graphene
  • 10.6 Conclusion
  • 10.7 Recommendation
  • References
  • Chapter 11: Immiscible Polymer Blends Stabilized with Nanophase
  • 11.1 Introduction
  • 11.2 Various Classifications of Polymeric Nanomaterials
  • 11.2.1 Mechanism of Compatibilization
  • 11.2.2 Theories of Phase Separation
  • 11.3 Wetting Parameters
  • Effect on Particle Localization
  • 11.4 Influence of Dynamic Processes on Ternary Nanocomposite Morphology
  • 11.4.1 Influence of Processing (Mixing Sequence)
  • 11.5 Compatiblizing Effect of Nanoparticles
  • 11.6 Effect of Nanostructured Materials Nature on Phase Stability
  • 11.7 Current Issues in Nanostructured Stabilized Polymer Blends
  • 11.8 Conclusion
  • References
  • Chapter 12: Nanostructured Polymer Blends for Gas/Vapor Barrier and Dielectric Applications
  • 12.1 Introduction
  • 12.2 Gas Barrier Property
  • 12.3 Mechanisms of Barrier Improvement in Polymers
  • 12.4 Tortuous Path Model
  • 12.5 Types of Nanoparticles
  • 12.6 Nanocomposites
  • 12.6.1 Montmorillonite
  • 12.6.2 Polyhedral Oligomeric Silsesquioxane
  • 12.7 Nanostructured Polymer Blends
  • 12.8 Polymers and Their Nanostructured Polymer Blends
  • 12.8.1 Ethylene-Vinyl Acetate
  • 12.8.2 Nanostructured Blends of EVA
  • 12.8.3 Polyamides
  • 12.8.4 Nanostructured Polyamide Blends
  • 12.8.5 POSS-Blended Nanostructured Polymer
  • 12.9 Gas and Oxygen Barrier Characteristics of Nanostructured Polymer Blends
  • 12.10 Barrier Properties Against UV Radiation of Nanocomposite Fibers
  • 12.11 Dielectric Property of Nanostructured Polymer Blends
  • 12.12 Future Trends: Predicting Nanotechnology Growth
  • 12.13 Conclusions
  • References
  • Chapter 13: Polyhydroxyalkanoates and Their Nanobiocomposites With Cellulose Nanocrystals
  • 13.1 Introduction
  • 13.2 Poly(3-Hydroxybutyrate) and Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)
  • 13.3 Lignocellulosic Fibers
  • 13.3.1 Cellulose Nanofibers
  • 13.3.2 Properties and Applications of Cellulose Nanofibers
  • 13.4 Nanobiocomposites
  • 13.4.1 PHA-Based Nanocellulosic Composites
  • 13.4.2 Cellulose Whiskers Obtention
  • 13.4.3 Process of Nanocomposites Obtention
  • 13.5 Effect of Nanocellulose on the Properties of PHA
  • 13.5.1 X-Ray Diffraction (XRD)
  • 13.5.2 Barrier Properties
  • 13.5.3 Thermal Properties
  • 13.5.4 Mechanical Properties
  • 13.6 Application of PHBV/NCC Nanocomposites
  • 13.7 Summary
  • Acknowledgments
  • References
  • Chapter 14: Crystallization and Morphological Changes in Nanostructured Polymer Blends
  • 14.1 Introduction
  • 14.1.1 Theories of Polymer Crystallization
  • 14.2 Nucleation
  • 14.2.1 Crystallization in Polymer Blends
  • 14.3 Blends of Crystallizable Matrix and Amorphous Dispersed Phase
  • 14.3.1 Spherulite Growth Rate in Crystallizable Matrix
  • 14.3.2 Polymer Blends with Amorphous Matrix and Crystallizable Dispersed Phase
  • 14.3.3 Polymer Blends Containing Crystallizable Matrix and Dispersed Phases
  • 14.3.4 Crystallization of Nanostructured Polymer Blends
  • 14.4 Confined Crystallization
  • 14.5 Polymorphic Change
  • 14.5.1 Factors Influencing Polymorphic Behavior
  • 14.5.1.1 Molecular weight
  • 14.5.1.2 Microstructure of polymer chain
  • 14.5.1.3 Fusion conditions prior to crystallization
  • 14.5.1.4 Miscible polymer blending
  • 14.5.1.5 Epitaxial crystallization
  • 14.5.1.6 Nucleating agent
  • 14.5.2 Effects of Polymorphism on Physical Properties
  • 14.6 Conclusion
  • References
  • Chapter 15: Phase Structures in Thin Films of Nanostructured Polymer Blends
  • 15.1 Introduction
  • 15.2 Introduction to Polymer-Blend Thin Films
  • 15.3 Formation of Nanostructured Thin Films in Polymer Blends
  • 15.3.1 Temperature and Solvent Directed Phase Separation in Thin Films
  • 15.3.2 Dewetting Versus Stabilized Films
  • 15.4 Surface Morphologies in Homopolymer-Blend Thin Films
  • 15.4.1 Parameters Influencing the Pattern Formed
  • 15.4.1.1 Blend composition
  • 15.4.1.2 Polymer structure and molecular weight
  • 15.4.1.3 Effect of the thickness on the film morphology
  • 15.4.1.4 Annealing
  • 15.4.1.5 Role of the substrate on the morphology
  • 15.4.1.6 Solvent
  • 15.4.1.7 Dewetting on thin films
  • 15.4.1.8 Influence of the environmental relative humidity: polarity/phase separation
  • 15.4.2 Thin Film Morphologies Exhibited by Homopolymer Blends on Patterned Substrates
  • 15.4.3 Substrate Directed Stratification
  • 15.5 Self-Assembly of BCs in Thin Films
  • 15.5.1 BC Composition and Nanodomain Formation Relative to the Surface
  • 15.5.2 Role of the Film Thickness on the Thin Film Morphology
  • 15.5.3 Island-and-Hole Formation
  • 15.5.4 Improvement of the Phase Morphology
  • 15.6 Pattern Formation in Thin Films of BC/Homopolymer
  • 15.7 Thin Film Ordering in BC/BC Blends
  • 15.8 Applications of Thin Films of Nanostructured Polymer Blends
  • 15.8.1 Patterning at Surfaces
  • 15.8.2 Complex and Hierarchically Structured Polymer Thin Films from Polymer Blends
  • 15.8.3 Superhydrophobic Coatings
  • 15.8.4 Stimuli-Responsive Nano/Microstructured Thin Films
  • 15.8.5 Biomolecular Arrays
  • 15.8.6 Electronics and Optoelectronics
  • 15.9 Conclusions
  • Acknowledgment
  • References
  • Chapter 16: Mechanisms of Toughening in Nanostructured Polymer Blends
  • 16.1 Toughness
  • 16.2 Planes of Tests
  • 16.2.1 Effect of Material Thickness
  • 16.2.2 Translational Stress and Plane Stress States
  • 16.2.3 Orientation of Grains
  • 16.3 Toughening Mechanism of Materials
  • 16.3.1 Intrinsic Mechanisms
  • 16.3.2 Extrinsic Mechanisms
  • 16.4 Toughening of Polymers and Polymer Blends
  • 16.5 Toughening of Nanostructured Polymer Blends
  • 16.6 Conclusions
  • References
  • Chapter 17: Hydrophobic/Hydrophilic Nanostructured Polymer Blends
  • 17.1 Introduction
  • 17.2 Black Copolymers
  • 17.3 Amphilic Block Copolymer
  • 17.4 Hydrogen Bonds in Nanostructured Polymer Blends
  • 17.5 Superhydrophilicity
  • 17.6 Methods Used for Preparation of Superhydrophilic Surfaces
  • 17.6.1 Sol-Gel Method
  • 17.6.2 Electrochemical Method
  • 17.6.3 Electrospinning
  • 17.6.4 Plasma Technique
  • 17.6.5 Chemical and Hydrothermal Methods
  • 17.6.6 Phase Separation
  • 17.6.7 Vapor Deposition
  • 17.6.8 Layer-by-Layer Assembly
  • 17.6.9 Templating Method
  • 17.7 Superhydrophobicity
  • 17.8 Methods Used for the Preparation of Superhydrophobic Surfaces
  • 17.8.1 Chemical Deposition
  • 17.8.2 Colloidal Assemblies
  • 17.8.3 LBL Deposition
  • 17.8.4 Sol-Gel Methods
  • 17.8.5 Templation
  • 17.8.6 Photolithography
  • 17.8.7 Plasma Treatment of Surfaces
  • 17.9 Phase Structure and Surface Morphology
  • 17.9.1 Janus Structure
  • 17.9.1.1 Structure and morphology in PS / PMMA polymer blends
  • 17.9.2 Core-Shell Structure
  • 17.9.2.1 Structure and morphology of soy protein/ PS nanoblends
  • 17.10 Applications
  • 17.11 Conclusions
  • Acknowledgment
  • References
  • Appendix
  • Index
  • Back Cover

Contributors


T.A. Adegbola     Department of Mechanical Engineering, Tshwane University of Technology, Pretoria, Republic of South Africa

Amos Adeniyi     Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria, Republic of South Africa

B.A. Aderibigbe     Department of Chemistry, University of Fort Hare, Alice, Republic of South Africa

Oluranti Agboola

Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria

Department of Civil and Chemical Engineering, University of South Africa, Johannesburg, Republic of South Africa

S.C. Agwuncha     Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria, Republic of South Africa

A. Babul Reddy     Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria, Republic of South Africa

Cirlene Fourquet_Bandeira     Fatigue and Aeronautic Materials Research Group, Materials and Technology Department, UNESP-Universidade Estadual Paulista, Guaratinguetá, São Paulo, Brazil

Rose Marie Belardi     Universidade Federal de Itajubá, Itajubá, Minas Gerais, Brazil

Thatiane Brocks     Fatigue and Aeronautic Materials Research Group, Materials and Technology Department, UNESP-Universidade Estadual Paulista, Guaratinguetá, São Paulo, Brazil

Maria Odila Hilário Cioffi     Fatigue and Aeronautic Materials Research Group, Materials and Technology Department, UNESP-Universidade Estadual Paulista, Guaratinguetá, São Paulo, Brazil

Kelly C. Coelho de Carvalho     Fatigue and Aeronautic Materials Research Group, Materials and Technology Department, UNESP-Universidade Estadual Paulista, Guaratinguetá, São Paulo, Brazil

M.O. Durowoju     Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria, Republic of South Africa

Wagner Martins Florentino     Laboratory of Materials Processing, Volta Redonda of Center, UniFOA, Volta Redonda, Brazil

D. Gnanasekarana     Dielectric Materials Division, Central Power Research Institute, Bangalore, India

S.M.R. Goddeti     Department of Applied Chemistry, University of Johannesburg, Doornfontein, Republic of South Africa

Julia Guedes     Laboratory of Materials Processing, Volta Redonda of Center, UniFOA, Volta Redonda, Brazil

I.D. Ibrahim     Department of Mechanical Engineering, Tshwane University of Technology, Pretoria, Republic of South Africa

T. Jayaramudu     Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria, Republic of South Africa

J. Jayaramudu

DST/CSIR National Centre for Nano-Structured Materials, Material Science and Manufacturing, Council for Science and Industrial Research, Pretoria, South Africa

Council for Scientific and Industrial Research (CSIR), National Centre for Nano-structured Materials, Material Science and Manufacturing, Brummeria, South Africa

Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria, Republic of South Africa

DST/CSIR Nanotechnology Innovation Centre, National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria, South Africa

M.C. Khoathane     Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria, Republic of South Africa

Ing Kong     University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia

W.K. Kupolati     Department of Civil Engineering, Tshwane University of Technology, Pretoria, Republic of South Africa

B. Manjula     Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria, Republic of South Africa

Tauhami Mokrani     Department of Civil and Chemical Engineering, University of South Africa, Johannesburg, Republic of South Africa

Sérgio Roberto Montoro

Fatigue and Aeronautic Materials Research Group, Materials and Technology Department, UNESP-Universidade Estadual Paulista, Guaratinguetá

Laboratory of Polymers, Chemical Engineering Department, Engineering School of Lorena, University of São Paulo, Lorena

Centro Estadual de Educação Tecnológica "Paula Souza" (CEETEPS), Pindamonhangaba, São Paulo, Brazil

L. Moropeng     Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria, Republic of South Africa

E. Mukwevho     Department of BioChemistry, University of North West, Mmabatho, Republic of South Africa

Daniella Regina Mulinari     Laboratory of Materials Processing, Volta Redonda of Center, UniFOA, Volta Redonda, and Mechanical and Energy Department, Faculty of Technology, UERJ-Universidade do Estado do Rio de Janeiro, Resende, Brazil

N. Naryana Reddy     Centre for Advanced Biomaterials for Health care, Italian Institute of Technology@CRIB, Napoli, Italy

B. Oboirien     CSIR Materials Science and Manufacturing, Pretoria, Republic of South Africa

V.O. Ojijo     Council for Scientific and Industrial Research (CSIR), National Centre for Nano-structured Materials, Material Science and Manufacturing, Brummeria, South Africa

P.A. Olubambi     Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria, Republic of South Africa

S.J. Owonubi     Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria, Republic of South Africa

S. Periyar Selvam     Department of Food Process Engineering, SRM University, Chennai, India

G. Phiri     Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria, Republic of South Africa

Fernanda S. Poletto     Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil

G.M. Raghavendra     Synthetic Polymer Laboratory, Department of Polymer Science & Technology, Sri Krishnadevaraya University, Anantapur, India

S.S. Ray     Council for Scientific and Industrial Research, National Centre for Nano-structured Materials, Material Science and Manufacturing, Pretoria, Republic of South Africa

Juan Rodríguez-Hernández     Chemistry and Properties of Polymeric Materials Department, Institute of Polymer Science and Technology (ICTP-CSIC), Madrid, Spain

Emmanuel Rotimi Sadiku     Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria, Republic of South Africa

A. Shanavas     Department of Chemistry, The New College, Chennai, India

T.A. Shittu     Department of Food Science and Technology, University of Agriculture, Abeokuta, Nigeria

G. Siva Mohan Reddy

Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria, Republic of South Africa

Department of Applied Chemistry, University of...

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

145,18 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok