Handbook of Composites from Renewable Materials, Volume 7, Nanocomposites

Science and Fundamentals
 
 
Standards Information Network (Verlag)
  • erschienen am 28. März 2017
  • |
  • 736 Seiten
 
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-1-119-22445-7 (ISBN)
 
The Handbook of Composites From Renewable Materials comprises a set of 8 individual volumes that brings an interdisciplinary perspective to accomplish a more detailed understanding of the interplay between the synthesis, structure, characterization, processing, applications and performance of these advanced materials. The handbook covers a multitude of natural polymers/ reinforcement/ fillers and biodegradable materials. Together, the 8 volumes total at least 5000 pages and offers a unique publication.
This 7th volume Handbook is solely focused on Nanocomposites: Science and Fundamentals. Some of the important topics include but not limited to: preparation, characterization and applications of nano materials from renewable resources; hydrogels and its nanocomposites from renewable resources: preparation of chitin-based nanocomposite materials through gelation with ionic liquid; starch based bionanocomposites; biorenewable nanofiber and nanocrystal; investigation of wear characteristics of dental composite reinforced with rice husk derived nanosilica filler particles; performance of regenerated cellulose/vermiculite nanocomposites fabricated via ionic liquid; preparation, structure, properties and interactions of the PVA/cellulose composites; green composites with cellulose nano-reinforcements; biomass composites from bamboo-based micro/nano fibers; synthesis and medicinal properties of polycarbonates and resins from renewable sources; nanostructured polymer composites with modified carbon nanotubes; organic-inorganic nanocomposites derived from polysaccharides; natural polymer based nanocomposites; cellulose whisker based green polymer composites; poly (lactic acid) nanocomposites reinforced with different additives; nanocrystalline cellulose; halloysite based bionanocomposites; nanostructurated composites based on biodegradable polymers and silver nanoparticles; starch-based biomaterials and nanocomposites; green nanocomposites based on PLA and natural organic fillers; chitin and chitosan based nanocomposites.
weitere Ausgaben werden ermittelt
Vijay Kumar Thakur is a Lecturer in the School of Aerospace, Transport and Manufacturing Engineering, Cranfield University, UK. Previously he had been a Staff Scientist in the School of Mechanical and Materials Engineering at Washington State University, USA. He spent his postdoctoral study in Materials Science & Engineering at Iowa State University, USA, and gained his PhD in Polymer Chemistry (2009) at the National Institute of Technology, India. He has published more than 90 SCI journal research articles in the field of polymers/materials science and holds one US patent. He has also published about 25 books and 33 book chapters on the advanced state-of-the-art of polymers/materials science with numerous publishers, including Wiley-Scrivener.
Manju Kumar Thakur has been working as an Assistant Professor of Chemistry at the Division of Chemistry, Govt. Degree College Sarkaghat Himachal Pradesh University, Shimla, India since 2010. She received her PhD in Polymer Chemistry from the Chemistry Department at Himachal Pradesh University. She has deep experience in the field of organic chemistry, biopolymers, composites/ nanocomposites, hydrogels, applications of hydrogels in the removal of toxic heavy metal ions, drug delivery etc. She has published more than 30 research papers in peer-reviewed journals, 25 book chapters and co-authored five books all in the field of polymeric materials.
Michael R. Kessler is a Professor and Director of the School of Mechanical and Materials Engineering at Washington State University, USA. He is an expert in the mechanics, processing, and characterization of polymer matrix composites and nanocomposites. His honours include the Army Research Office Young Investigator Award, the Air Force Office of Scientific Research Young Investigator Award, the NSF CAREER Award, and the Elsevier Young Composites Researcher Award from the American Society for Composites. He has more than 150 journal articles and 5800 citations, holds 6 patents, published 5 books on the synthesis and characterization of polymer materials, and presented at least 200 talks at national and international meetings.
1 - Cover [Seite 1]
2 - Title Page [Seite 5]
3 - Copyright Page [Seite 6]
4 - Dedication [Seite 7]
5 - Contents [Seite 9]
6 - Preface [Seite 23]
7 - 1 Preparation, Characterization, and Applications of Nanomaterials (Cellulose, Lignin, and Silica) from Renewable (Lignocellulosic) Resources [Seite 25]
7.1 - 1.1 Introduction [Seite 26]
7.1.1 - 1.1.1 Cellulose and Nanocellulose [Seite 27]
7.1.1.1 - 1.1.1.1 Types of Nanocellulose [Seite 29]
7.1.2 - 1.1.2 Lignin and Nanolignin [Seite 31]
7.1.3 - 1.1.3 Silica and Nanosilica [Seite 31]
7.2 - 1.2 Preparation of Nanomaterials [Seite 34]
7.2.1 - 1.2.1 Nanocellulose from Lignocellulosic Materials [Seite 34]
7.2.1.1 - 1.2.1.1 Mechanical Shearing and Grinding [Seite 35]
7.2.1.2 - 1.2.1.2 Steam Explosion/High-Pressure Homogenization [Seite 36]
7.2.1.3 - 1.2.1.3 Chemical Methods (Acid Hydrolysis, Alkaline Treatment and Bleaching) [Seite 40]
7.2.1.4 - 1.2.1.4 Ultrasonication [Seite 41]
7.2.1.5 - 1.2.1.5 Other Methods [Seite 42]
7.2.1.6 - 1.2.1.6 Functionalized Nanocellulose from Fibers [Seite 44]
7.2.2 - 1.2.2 Nanolignin [Seite 45]
7.2.2.1 - 1.2.2.1 Precipitation Method [Seite 46]
7.2.2.2 - 1.2.2.2 Chemical Modification [Seite 46]
7.2.2.3 - 1.2.2.3 Electro Spinning Followed by Surface Modification [Seite 46]
7.2.2.4 - 1.2.2.4 Freeze Drying Followed by Thermal Stabilization and Carbonization [Seite 46]
7.2.2.5 - 1.2.2.5 Supercritical Antisolvent Technology [Seite 47]
7.2.2.6 - 1.2.2.6 Chemomechanical Methods [Seite 47]
7.2.2.7 - 1.2.2.7 Nanolignin by Self-Assembly [Seite 47]
7.2.2.8 - 1.2.2.8 Lignin Nanocontainers by Miniemulsion Method [Seite 47]
7.2.2.9 - 1.2.2.9 Template-Mediated Synthesis [Seite 48]
7.2.3 - 1.2.3 Nanosilica [Seite 49]
7.2.3.1 - 1.2.3.1 Nanosilica Obtained from Plants [Seite 49]
7.2.3.2 - 1.2.3.2 Enzymatic Crystallization of Amorphous Nanosilica [Seite 51]
7.3 - 1.3 Characterization of Nanomaterials [Seite 51]
7.3.1 - 1.3.1 Characterization of Nanocellulose [Seite 53]
7.3.1.1 - 1.3.1.1 Structure and Morphology of NC [Seite 53]
7.3.1.2 - 1.3.1.2 Physical Properties (Dimensions, Density, Electrical, Crystallinity, and Any Other) [Seite 57]
7.3.1.3 - 1.3.1.3 Mechanical Properties [Seite 60]
7.3.2 - 1.3.2 Characterization of Lignin Nanoparticles [Seite 61]
7.3.2.1 - 1.3.2.1 Morphology of Lignin Nanoparticles [Seite 62]
7.3.2.2 - 1.3.2.2 Thermal Analysis [Seite 63]
7.3.3 - 1.3.3 Other Methods [Seite 63]
7.3.4 - 1.3.4 Characterization of Nanosilica [Seite 63]
7.4 - 1.4 Applications and Market Aspects [Seite 69]
7.4.1 - 1.4.1 Nanocellulose [Seite 69]
7.4.1.1 - 1.4.1.1 Biomedical Applications [Seite 70]
7.4.1.2 - 1.4.1.2 Dielectric Materials [Seite 70]
7.4.1.3 - 1.4.1.3 In Composite Manufacturing for Various Applications [Seite 70]
7.4.1.4 - 1.4.1.4 Advanced Functional Materials [Seite 71]
7.4.2 - 1.4.2 Nanolignin [Seite 73]
7.4.3 - 1.4.3 Nanosilica [Seite 75]
7.4.3.1 - 1.4.3.1 In Composites [Seite 75]
7.4.4 - 1.4.3.2 Nanosilica in Nacre Composite [Seite 76]
7.4.5 - 1.4.3.3 Encapsulation of Living Cells by Nanosilica [Seite 76]
7.5 - 1.5 Concluding Remarks and Challenges Ahead [Seite 78]
7.6 - Acknowledgments [Seite 79]
7.7 - References [Seite 79]
8 - 2 Hydrogels and its Nanocomposites from Renewable Resources: Biotechnological and Biomedical Applications [Seite 91]
8.1 - 2.1 Introduction [Seite 91]
8.2 - 2.2 Hydrogels from Renewable Resources [Seite 95]
8.3 - 2.3 Hydrogel Technical Features [Seite 96]
8.4 - 2.4 Nanocomposite Hydrogels [Seite 96]
8.4.1 - 2.4.1 Polymer-Clay-Based Nanocomposite Hydrogels [Seite 99]
8.4.2 - 2.4.2 Poly(ethylene Oxide)-Silicate Nanocomposite Hydrogels [Seite 100]
8.4.3 - 2.4.3 Poly(acryl Amide) and Poly(vinyl Alcohol)-Silicate-Based Nanocomposite Hydrogels [Seite 101]
8.5 - 2.5 Nanocomposite Hydrogels with Natural Polymers [Seite 103]
8.6 - 2.6 Classifications of Hydrogels [Seite 104]
8.7 - 2.7 Applications of Hydrogels as Biomaterials [Seite 106]
8.7.1 - 2.7.1 Hydrogels for Drug Delivery Applications [Seite 106]
8.7.2 - 2.7.2 Hydrogels for Tissue-Engineering Scaffolds [Seite 108]
8.7.3 - 2.7.3 Hydrogels for Contact Lens [Seite 109]
8.7.4 - 2.7.4 Hydrogels for Cell Encapsulation [Seite 109]
8.7.5 - 2.7.5 Artificial Muscles and Nerve Regeneration [Seite 110]
8.8 - 2.8 Conclusions [Seite 111]
8.9 - Acknowledgment [Seite 112]
8.10 - References [Seite 112]
9 - 3 Preparation of Chitin-Based Nanocomposite Materials Through Gelation with Ionic Liquid [Seite 121]
9.1 - 3.1 Introduction [Seite 122]
9.2 - 3.2 Dissolution and Gelation of Chitin with Ionic Liquid [Seite 124]
9.3 - 3.3 Fabrication of Self-Assembled Chitin Nanofibers by Regeneration from the Chitin Ion Gels [Seite 127]
9.4 - 3.4 Preparation of Nanocomposite Materials from Chitin Nanofibers [Seite 128]
9.5 - 3.5 Conclusion [Seite 138]
9.6 - References [Seite 139]
10 - 4 Starch-Based Bionanocomposites [Seite 145]
10.1 - 4.1 Introduction [Seite 145]
10.2 - 4.2 Nanocomposites [Seite 146]
10.3 - 4.3 Starch Structural Features [Seite 147]
10.4 - 4.4 Starch-Based Bionanocomposites [Seite 148]
10.4.1 - 4.4.1 Starch Silicate Nanocomposites [Seite 149]
10.4.2 - 4.4.2 Starch/Chitosan Composites [Seite 150]
10.4.3 - 4.4.3 Starch Cellulose Nanocomposites [Seite 152]
10.4.4 - 4.4.4 Starch Nanocomposites with Other Nanofillers [Seite 153]
10.5 - 4.5 Starch Nanocrystal, Nanoparticle, and Nanocolloid Preparation and Modification Methods [Seite 155]
10.5.1 - 4.5.1 Starch Nanocrystals Preparation by Acid Hydrolysis Method [Seite 155]
10.5.2 - 4.5.2 Starch Nanocrystal Modification Methods [Seite 157]
10.5.2.1 - 4.5.2.1 Starch Nanocrystals Chemical Modification by Molecules with Low Molecular Weight [Seite 157]
10.5.2.2 - 4.5.2.2 Modification of Starch Nanocrystals via Surface Grafting of Polymers [Seite 157]
10.5.3 - 4.5.3 Starch Nanoparticle and Nanocolloid Preparation and Modification Methods [Seite 159]
10.6 - 4.6 Nano Starch as Fillers in Other Nanocomposites [Seite 164]
10.7 - 4.7 Biomedical Application [Seite 167]
10.8 - 4.8 Conclusion [Seite 168]
10.9 - References [Seite 169]
11 - 5 Biorenewable Nanofiber and Nanocrystal: Renewable Nanomaterials for Constructing Novel Nanocomposites [Seite 179]
11.1 - 5.1 Nanocellulose-Based and Nanocellulose-Reinforced Nanocomposite Hydrogels [Seite 180]
11.1.1 - 5.1.1 Gelling Performances of Nanocelluloses [Seite 181]
11.1.2 - 5.1.2 Nanocelluloses-Reinforced Nanocomposite Hydrogels [Seite 183]
11.2 - 5.2 Nanocellulose-Based Aerogels [Seite 190]
11.2.1 - 5.2.1 Preparation and Properties of Nanocellulose Aerogels [Seite 190]
11.2.2 - 5.2.2 Nanocellulose-Polymer Composite Aerogels [Seite 195]
11.2.3 - 5.2.3 Nanocellulose-Inorganic Nanocomposite Aerogels [Seite 200]
11.2.4 - 5.2.4 Nanocellulose-Nanocarbon Hybrid Aerogels [Seite 203]
11.3 - 5.3 Nanocellulose-Based Biomimetic and Conductive Nanocomposite Films [Seite 207]
11.3.1 - 5.3.1 Nanocellulose-Polymer Biomimetic Nanocomposite Films [Seite 207]
11.3.2 - 5.3.2 Nanocellulose-Inorganic Biomimetic Nanocomposite Films [Seite 211]
11.3.3 - 5.3.3 Nanocellulose-Nanocarbon Conductive Nanocomposite Films [Seite 214]
11.4 - 5.4 Chiral Nematic Liquid Crystal and its Nanocomposites with Unique Optical Properties [Seite 220]
11.4.1 - 5.4.1 CNC Chiral Nematic Performances [Seite 220]
11.4.2 - 5.4.2 CNC-Polymer Photonic Nanocomposites [Seite 223]
11.4.3 - 5.4.3 CNC-Inorganic Photonic Nanocomposites [Seite 226]
11.4.4 - 5.4.4 CNC-Templated Chiral Nematic Nanomaterials [Seite 228]
11.5 - 5.5 Spun Fibers from Nanocelluloses [Seite 231]
11.5.1 - 5.5.1 Spinning Performances of Nanocelluloses and Properties [Seite 231]
11.5.2 - 5.5.2 Nanocellulose-Polymer Spinning Nanocomposite Fibers [Seite 234]
11.5.3 - 5.5.3 Nanocellulose-Nanocarbons Spinning Nanocomposite Fibers [Seite 236]
11.6 - 5.6 Summary and Outlook [Seite 237]
11.7 - References [Seite 239]
12 - 6 Investigation of Wear Characteristics of Dental Composite Reinforced with Rice Husk-Derived Nanosilica Filler Particles [Seite 251]
12.1 - 6.1 Introduction [Seite 251]
12.2 - 6.2 Materials and Method [Seite 253]
12.2.1 - 6.2.1 Synthesis of Nanosilica Powder [Seite 253]
12.2.2 - 6.2.2 Materials and Fabrication Details [Seite 254]
12.2.3 - 6.2.3 Determination of Hardness [Seite 254]
12.2.4 - 6.2.4 Determination of Flexural Strength [Seite 255]
12.2.5 - 6.2.5 Determination of Wear [Seite 255]
12.2.6 - 6.2.6 Field Emission Scanning Electron Microscope [Seite 256]
12.3 - 6.3 Results and Discussion [Seite 256]
12.3.1 - 6.3.1 Effect of Vickers Hardness on the Dental Composite Filled with Silane-Treated Nanosilica [Seite 256]
12.3.2 - 6.3.2 Effect of Flexural Strength on the Dental Composite Filled with Silane-Treated Nanosilica [Seite 257]
12.3.3 - 6.3.3 Steady-State Condition for Wear Characterization in Food Slurry and Acidic Medium [Seite 257]
12.3.3.1 - 6.3.3.1 Effect of Chewing Load on Volumetric Wear Rate on Dental Composite [Seite 257]
12.3.3.2 - 6.3.3.2 Effect of Profile Speed on Volumetric Wear Rate of Dental Composite [Seite 259]
12.3.3.3 - 6.3.3.3 Effect of Chamber Temperature on Volumetric Wear Rate of Dental Composite [Seite 260]
12.3.4 - 6.3.4 Wear Analysis of Experimental Results by Taguchi Method and ANOVA Analysis [Seite 261]
12.3.4.1 - 6.3.4.1 Wear Analysis of Silane-Treated Nanosilica-Filled Dental Composite in Food Slurry Using Taguchi and ANOVA [Seite 261]
12.3.4.2 - 6.3.4.2 Wear Analysis of Silane-Treated Nanosilica-Filled Dental Composite in Citric Acid Using Taguchi and ANOVA [Seite 264]
12.3.5 - 6.3.5 Surface Morphology of Worn Surfaces Under Food Slurry and Citric Acid Condition [Seite 265]
12.3.6 - 6.3.6 Confirmation Experiment of Proposed Composites [Seite 267]
12.4 - 6.4 Conclusions [Seite 268]
12.5 - Acknowledgments [Seite 269]
12.6 - Nomenclature [Seite 269]
12.7 - References [Seite 269]
13 - 7 Performance of Regenerated Cellulose Nanocomposites Fabricated via Ionic Liquid Based on Halloysites and Vermiculite [Seite 273]
13.1 - 7.1 Introduction [Seite 274]
13.1.1 - 7.1.1 Overview [Seite 274]
13.1.2 - 7.1.2 Cellulose Structure and Properties [Seite 274]
13.1.3 - 7.1.3 Regenerated Cellulose [Seite 275]
13.1.4 - 7.1.4 Conventional Solvent for Cellulose [Seite 275]
13.1.5 - 7.1.5 Dissolution of Cellulose in NMMO [Seite 276]
13.1.6 - 7.1.6 Cellulose Dissolution in Ionic Liquid [Seite 277]
13.1.7 - 7.1.7 Regenerated Cellulose Nanocomposites [Seite 279]
13.1.8 - 7.1.8 Halloysites [Seite 279]
13.1.9 - 7.1.9 Vermiculite [Seite 279]
13.2 - 7.2 Experimental [Seite 280]
13.2.1 - 7.2.1 Materials [Seite 280]
13.2.2 - 7.2.2 Sample Preparation [Seite 281]
13.2.2.1 - 7.2.2.1 The Preparation of Regenerated Cellulose via Ionic Liquid [Seite 281]
13.2.2.2 - 7.2.2.2 Preparation of Regenerated Cellulose Nanocomposites via Ionic Liquids [Seite 281]
13.2.3 - 7.2.3 Characterization of the Nanocomposites Films [Seite 281]
13.3 - 7.3 Results and Discussions [Seite 282]
13.3.1 - 7.3.1 XRD Patterns of RC Nanocomposites [Seite 282]
13.3.2 - 7.3.2 FTIR Spectra of RC Nanocomposites [Seite 283]
13.3.3 - 7.3.3 Mechanical Properties of RC Nanocomposites [Seite 285]
13.3.4 - 7.3.4 Morphology Analysis of the RC Nanocomposites [Seite 287]
13.3.4.1 - 7.3.4.1 Transmission Electron Micrographs Images Analysis [Seite 287]
13.3.4.2 - 7.3.4.2 Scanning Electron Microscopy Images Analysis [Seite 288]
13.3.5 - 7.3.5 Thermal Stability Analysis of RC Nanocomposites [Seite 289]
13.3.6 - 7.3.6 Water Absorption of RC Nanocomposites [Seite 291]
13.4 - 7.4 Conclusion [Seite 292]
13.5 - Acknowledgments [Seite 293]
13.6 - References [Seite 293]
14 - 8 Preparation, Structure, Properties, and Interactions of the PVA/Cellulose Composites [Seite 299]
14.1 - 8.1 PVA and Cellulose [Seite 299]
14.1.1 - 8.1.1 Polyvinyl Alcohol [Seite 299]
14.1.1.1 - 8.1.1.1 Molecular Weight and the Degree of Alcoholysis [Seite 299]
14.1.1.2 - 8.1.1.2 The Advantages and Disadvantages of PVA [Seite 300]
14.1.2 - 8.1.2 Cellulose [Seite 301]
14.1.2.1 - 8.1.2.1 Structure and Chemistry of Cellulose [Seite 301]
14.1.2.2 - 8.1.2.2 Source of Cellulose [Seite 302]
14.1.2.3 - 8.1.2.3 The Particle Types of Cellulose [Seite 302]
14.1.2.4 - 8.1.2.4 Properties of Cellulose [Seite 303]
14.1.2.5 - 8.1.2.5 Application of Cellulose [Seite 304]
14.1.3 - 8.1.3 PVA/Cellulose Composites [Seite 304]
14.1.3.1 - 8.1.3.1 The Properties of PVA/Cellulose Composites [Seite 304]
14.1.3.2 - 8.1.3.2 Application of PVA/Cellulose Composites [Seite 305]
14.2 - 8.2 The Bulk and Surface Modification of Cellulose Particles [Seite 305]
14.2.1 - 8.2.1 The Bulk Modification of Cellulose Particles [Seite 305]
14.2.1.1 - 8.2.1.1 Complex Modification [Seite 305]
14.2.1.2 - 8.2.1.2 Graft Polymerization [Seite 306]
14.2.2 - 8.2.2 The Surface Modification of Cellulose [Seite 307]
14.2.2.1 - 8.2.2.1 Chemical Surface Modification [Seite 307]
14.2.2.2 - 8.2.2.2 Physical Surface Modification [Seite 308]
14.3 - 8.3 The Methods and Technology of Preparation of the PVA/Cellulose Composites [Seite 308]
14.3.1 - 8.3.1 Solvent Casting [Seite 308]
14.3.2 - 8.3.2 Melt Processing [Seite 309]
14.3.3 - 8.3.3 Electrospun Fiber [Seite 309]
14.3.4 - 8.3.4 In Situ Production [Seite 310]
14.4 - 8.4 The Relationship between Structure and Properties of PVA/Cellulose Composites [Seite 310]
14.4.1 - 8.4.1 Interpenetrating Polymer Network [Seite 310]
14.4.2 - 8.4.2 Hydrogen-Bonding or Bond Network [Seite 311]
14.4.3 - 8.4.3 Chemical Cross-Linked Network [Seite 311]
14.5 - 8.5 The Effect of the Interaction between PVA and Cellulose on Properties of PVA/Cellulose Composites [Seite 312]
14.5.1 - 8.5.1 Characterization Methods for the Interaction between PVA and Cellulose [Seite 312]
14.5.1.1 - 8.5.1.1 Raman Spectroscopy [Seite 312]
14.5.1.2 - 8.5.1.2 Differential Scanning Calorimetry [Seite 312]
14.5.1.3 - 8.5.1.3 X-Ray Powder Diffraction [Seite 313]
14.5.1.4 - 8.5.1.4 Fourier Transform Infrared [Seite 313]
14.5.2 - 8.5.2 Interaction between PVA and Cellulose [Seite 314]
14.5.2.1 - 8.5.2.1 Molecular Interactions [Seite 314]
14.5.2.2 - 8.5.2.2 Covalent Interactions [Seite 314]
14.5.2.3 - 8.5.2.3 Nucleation of Cellulose [Seite 314]
14.6 - 8.6 Conclusions and Outlook [Seite 315]
14.7 - References [Seite 315]
15 - 9 Green Composites with Cellulose Nanoreinforcements [Seite 323]
15.1 - 9.1 Introduction [Seite 323]
15.2 - 9.2 A Short Overview on Nanosized Cellulose [Seite 324]
15.3 - 9.3 General Aspects on Green Composites with Cellulose Nanoreinforcements [Seite 328]
15.4 - 9.4 Green Composites from Biopolyamides and Cellulose Nanoreinforcements [Seite 329]
15.5 - 9.5 Green Composites from Polylactide and Cellulose Nanoreinforcements [Seite 333]
15.5.1 - 9.5.1 General Aspects [Seite 333]
15.5.2 - 9.5.2 Processing Methods [Seite 334]
15.5.2.1 - 9.5.2.1 Solution Casting [Seite 334]
15.5.2.2 - 9.5.2.2 Melt Processing [Seite 335]
15.5.2.3 - 9.5.2.3 Other Processing Techniques [Seite 338]
15.5.3 - 9.5.3 Mechanical, Thermal, and Morphological Properties [Seite 338]
15.5.4 - 9.5.4 Applications [Seite 342]
15.6 - 9.6 Microbial Polyesters Nanocellulose Composites [Seite 343]
15.6.1 - 9.6.1 PHAs Biosynthesis [Seite 343]
15.6.2 - 9.6.2 General Overview on PHAs-Nanocellulose Composites [Seite 345]
15.6.3 - 9.6.3 Processing Strategies for the Preparation of PHAs-Cellulose Nanocomposites [Seite 345]
15.6.4 - 9.6.4 Morphological, Thermal, and Mechanical Characteristics of PHAs/Nanocellulose [Seite 347]
15.6.5 - 9.6.5 Biodegradability and Biocompatibility [Seite 351]
15.6.6 - 9.6.6 Applications [Seite 352]
15.7 - 9.7 Conclusions [Seite 352]
15.8 - Acknowledgment [Seite 353]
15.9 - References [Seite 353]
16 - 10 Biomass Composites from Bamboo-Based Micro/Nanofibers [Seite 363]
16.1 - 10.1 Introduction [Seite 363]
16.2 - 10.2 Bamboo Microfiber and Microcomposites [Seite 364]
16.2.1 - 10.2.1 Bamboo Fibrovascular Bundle Structure [Seite 364]
16.2.2 - 10.2.2 Preparation Methods of Short Bamboo Microfiber [Seite 365]
16.2.3 - 10.2.3 Preparation of sBµF with Super-Heated Steam [Seite 366]
16.2.3.1 - 10.2.3.1 SHS Treatment [Seite 366]
16.2.3.2 - 10.2.3.2 Characterization Methods of sBµF [Seite 366]
16.2.3.3 - 10.2.3.3 Changes in Surface Morphology of SHS-Treated Bamboo [Seite 368]
16.2.3.4 - 10.2.3.4 Changes in Chemical and Physical Properties of SHS-Treated Bamboo [Seite 369]
16.2.3.5 - 10.2.3.5 Classification of sBµF [Seite 372]
16.2.4 - 10.2.4 Preparation of sBµF/Plastic Microcomposites [Seite 373]
16.2.4.1 - 10.2.4.1 Mechanical and Physical Properties of sBµF/Plastic Microcomposites [Seite 373]
16.2.4.2 - 10.2.4.2 Melt Processability of sBµF/Plastic Microcomposites [Seite 374]
16.2.4.3 - 10.2.4.3 Electrical Properties of sBµF/Plastic Microcomposites [Seite 374]
16.3 - 10.3 Bamboo Lignocellulosic Nanofiber and Nanocomposite [Seite 376]
16.3.1 - 10.3.1 Nanofibrillation Technologies of Cellulose [Seite 376]
16.3.2 - 10.3.2 Nanofibrillation Technologies of Lignocellulose [Seite 376]
16.3.3 - 10.3.3 Reactive Processing for Nanofibrillation [Seite 377]
16.3.4 - 10.3.4 Changes in Cellulose Crystalline Structure after Nanofibrillation [Seite 378]
16.3.5 - 10.3.5 Preparation of BLCNF/Plastic Nanocomposites [Seite 379]
16.3.6 - 10.3.6 Properties of BLCNF/Plastic Nanocomposites [Seite 380]
16.4 - 10.4 Conclusions [Seite 381]
16.5 - References [Seite 382]
17 - 11 Synthesis and Medicinal Properties of Polycarbonates and Resins from Renewable Sources [Seite 387]
17.1 - 11.1 Introduction [Seite 387]
17.2 - 11.2 Synthesis [Seite 389]
17.2.1 - 11.2.1 Chemical Synthesis of Polycarbonates [Seite 389]
17.2.2 - 11.2.2 Synthesis of Polycarbonate from Eugenol [Seite 389]
17.2.3 - 11.2.3 Synthesis of Renewable Bisphenols from 2,3-Pentanedione [Seite 390]
17.2.4 - 11.2.4 Synthesis of Mesoporous PC-SiO2 [Seite 391]
17.2.5 - 11.2.5 Synthesis of Fluorinated Epoxy-Terminated Bisphenol A Polycarbonate (FBPA-PC EP) [Seite 391]
17.2.6 - 11.2.6 Synthesis of Eugenol-Based Epoxy Resin (DEU-EP) [Seite 392]
17.3 - 11.3 Polycarbonates from Renewable Resources [Seite 392]
17.3.1 - 11.3.1 Ethylene from Biomass [Seite 392]
17.3.2 - 11.3.2 Synthesis of Dianols via Microwave Degradation [Seite 393]
17.3.3 - 11.3.3 Glycerol Carbonates from Recyclable Catalyst [Seite 393]
17.3.4 - 11.3.4 Alternative to Phosgene for Aromatic Polycarbonate and Isocyanate Syntheses [Seite 394]
17.3.5 - 11.3.5 Liquid-Phase Synthesis of Polycarbonate [Seite 395]
17.4 - 11.4 Medicinal Properties [Seite 396]
17.4.1 - 11.4.1 Polycarbonates in Drug Delivery [Seite 396]
17.4.2 - 11.4.2 Polycarbonates in Gene Transformation [Seite 396]
17.4.3 - 11.4.3 Cytotoxicity Test of Polycarbonates [Seite 397]
17.4.4 - 11.4.4 Polycarbonates in Autoimmunity [Seite 398]
17.4.5 - 11.4.5 Activation of Hyperprolactinemia and Immunostimulatory Response by Polycarbonates [Seite 399]
17.5 - 11.5 Conclusion [Seite 400]
17.6 - References [Seite 400]
18 - 12 Nanostructured Polymer Composites with Modified Carbon Nanotubes [Seite 405]
18.1 - 12.1 Introduction [Seite 406]
18.1.1 - 12.1.1 Polymer Materials and Their Application [Seite 406]
18.1.2 - 12.1.2 Carbon Nanotubes Application and Their Main Properties [Seite 411]
18.2 - 12.2 Experimental Methods [Seite 414]
18.2.1 - 12.2.1 Investigation of the CNTs Synthesis [Seite 414]
18.2.2 - 12.2.2 CNTs Treatment [Seite 419]
18.2.3 - 12.2.3 Composites Fabrication [Seite 419]
18.2.4 - 12.2.4 Testing Procedures [Seite 419]
18.3 - 12.3 Results and Discussion [Seite 420]
18.3.1 - 12.3.1 FTIR Spectroscopy [Seite 420]
18.3.2 - 12.3.2 Influence of Fluorination on the CNTs Specific Surface [Seite 420]
18.3.3 - 12.3.3 X-Ray Photoelectron Spectroscopy Study [Seite 420]
18.3.4 - 12.3.4 TGA of Virgin and Fluorinated CNTs [Seite 421]
18.3.5 - 12.3.5 SEM Data of Composites Fracture [Seite 421]
18.3.6 - 12.3.6 TGA and DSC of Composites [Seite 425]
18.3.7 - 12.3.7 Mechanical Properties of Composites [Seite 426]
18.3.7.1 - 12.3.7.1 Tensile Strength [Seite 426]
18.3.7.2 - 12.3.7.2 Flexural Strength [Seite 427]
18.4 - 12.4 Conclusion [Seite 427]
18.5 - Acknowledgments [Seite 428]
18.6 - References [Seite 428]
19 - 13 Organic-Inorganic Nanocomposites Derived from Polysaccharides: Challenges and Opportunities [Seite 433]
19.1 - 13.1 Introduction [Seite 433]
19.2 - 13.2 Constituents [Seite 436]
19.2.1 - 13.2.1 Polysaccharides [Seite 436]
19.2.2 - 13.2.2 Inorganic Nanofillers [Seite 437]
19.3 - 13.3 Preparation of Polysaccharide-Derived Nanocomposites [Seite 438]
19.3.1 - 13.3.1 Surface Modification [Seite 438]
19.3.2 - 13.3.2 Addition of Components [Seite 440]
19.3.3 - 13.3.3 In Situ Preparation of Nanoparticles via Precursors [Seite 443]
19.4 - 13.4 Processing [Seite 445]
19.4.1 - 13.4.1 Plasticizers [Seite 446]
19.4.2 - 13.4.2 Conventional Processing Methods to Prepare Inorganic-Polysaccharide Nanocomposites [Seite 446]
19.4.3 - 13.4.3 Emerging Methods to Prepare Inorganic-Polysaccharide Nanocomposites [Seite 448]
19.5 - 13.5 Trends and Perspectives [Seite 450]
19.6 - Acknowledgments [Seite 450]
19.7 - References [Seite 451]
20 - 14 Natural Polymer-Based Nanocomposites: A Greener Approach for the Future [Seite 457]
20.1 - 14.1 Introduction [Seite 457]
20.2 - 14.2 Wood Polymer Nanocomposite [Seite 459]
20.3 - 14.3 Basic Components of Wood Polymer Nanocomposite [Seite 460]
20.4 - 14.4 Natural Polymer/Raw Material Used in Preparation of WPNC [Seite 460]
20.4.1 - 14.4.1 Starch [Seite 460]
20.4.2 - 14.4.2 Gluten [Seite 461]
20.4.3 - 14.4.3 Chitosan [Seite 462]
20.4.4 - 14.4.4 Vegetable Oil [Seite 463]
20.4.4.1 - 14.4.4.1 Chemical Modification of Vegetable Oil [Seite 464]
20.5 - 14.5 Wood [Seite 466]
20.6 - 14.6 Cross-Linker [Seite 467]
20.7 - 14.7 Modification of Natural Polymers [Seite 467]
20.7.1 - 14.7.1 Grafting of Starch [Seite 467]
20.7.2 - 14.7.2 Modification of Starch by Other Methods [Seite 468]
20.7.3 - 14.7.3 Plasticizer [Seite 469]
20.7.4 - 14.7.4 Nano-Reinforcing Agents [Seite 470]
20.7.4.1 - 14.7.4.1 Montmorillonite [Seite 470]
20.7.4.2 - 14.7.4.2 Metal Oxide Nanoparticles [Seite 471]
20.7.4.3 - 14.7.4.3 Carbon Nanotubes [Seite 472]
20.7.4.4 - 14.7.4.4 Nanocellulose [Seite 472]
20.8 - 14.8 Properties of Natural Polymer-Based Composites [Seite 473]
20.8.1 - 14.8.1 Mechanical Properties [Seite 473]
20.8.2 - 14.8.2 Thermal Properties [Seite 474]
20.8.3 - 14.8.3 Water Uptake and Dimensional Stability [Seite 474]
20.9 - 14.9 Conclusion and Future Prospects [Seite 475]
20.10 - References [Seite 476]
21 - 15 Cellulose Whisker-Based Green Polymer Composites [Seite 485]
21.1 - 15.1 Cellulose: Discovery, Sources, and Microstructure [Seite 486]
21.1.1 - 15.1.1 Sources of Cellulose [Seite 486]
21.1.2 - 15.1.2 Microstructure of Cellulose [Seite 487]
21.2 - 15.2 Nanocellulose [Seite 490]
21.2.1 - 15.2.1 Acid Hydrolysis [Seite 491]
21.2.2 - 15.2.2 Mechanical Processes [Seite 494]
21.2.3 - 15.2.3 TEMPO-Mediated Oxidation [Seite 495]
21.2.4 - 15.2.4 Steam Explosion Method [Seite 496]
21.2.5 - 15.2.5 Enzymatic Hydrolysis [Seite 497]
21.2.6 - 15.2.6 Hydrolysis with Gaseous Acid [Seite 498]
21.2.7 - 15.2.7 Treatment with Ionic Liquid [Seite 498]
21.3 - 15.3 Polymer Composites [Seite 499]
21.3.1 - 15.3.1 Polymer Composite Fabrication Techniques [Seite 500]
21.3.1.1 - 15.3.1.1 Casting Evaporation Technique [Seite 500]
21.3.1.2 - 15.3.1.2 Extrusion [Seite 500]
21.3.1.3 - 15.3.1.3 Compression Molding [Seite 501]
21.3.1.4 - 15.3.1.4 Injection Molding [Seite 502]
21.3.2 - 15.3.2 Cellulose Whisker Composites: Literature-Based Discussion [Seite 502]
21.3.2.1 - 15.3.2.1 Latex-Based Composites [Seite 502]
21.3.2.2 - 15.3.2.2 Polar Polymer-Based Composites [Seite 503]
21.3.2.3 - 15.3.2.3 Nonpolar Polymer-Based Composites [Seite 503]
21.4 - 15.4 Applications of Cellulose Whisker Composites [Seite 507]
21.4.1 - 15.4.1 Packaging [Seite 508]
21.4.2 - 15.4.2 Automotive and Toys [Seite 508]
21.4.3 - 15.4.3 Electronics [Seite 508]
21.4.4 - 15.4.4 Biomedical Applications [Seite 509]
21.5 - References [Seite 510]
22 - 16 Poly(Lactic Acid) Nanocomposites Reinforced with Different Additives [Seite 519]
22.1 - 16.1 Introduction [Seite 519]
22.2 - 16.2 Biopolymers [Seite 521]
22.2.1 - 16.2.1 Classification of Biopolymers [Seite 521]
22.3 - 16.3 PLA Nanocomposites [Seite 526]
22.3.1 - 16.3.1 PLA-Clay Nanocomposites [Seite 526]
22.3.2 - 16.3.2 PLA-Carbonaceous Nanocomposites [Seite 531]
22.3.3 - 16.3.3 PLA-Bio Filler Composites [Seite 534]
22.3.4 - 16.3.4 PLA-Silica Nanocomposites [Seite 540]
22.4 - 16.4 Summary [Seite 540]
22.5 - References [Seite 540]
23 - 17 Nanocrystalline Cellulose: Green, Multifunctional and Sustainable Nanomaterials [Seite 547]
23.1 - 17.1 Introduction: Natural Based Products [Seite 547]
23.2 - 17.2 Nanocellulose [Seite 548]
23.2.1 - 17.2.1 Nanocellulose: Properties [Seite 548]
23.2.1.1 - 17.2.1.1 Nanocellulose: Mechanical Properties [Seite 550]
23.2.1.2 - 17.2.1.2 Nanocellulose: Physical Properties [Seite 550]
23.2.1.3 - 17.2.1.3 Nanocellulose: Surface Chemistry Properties [Seite 553]
23.2.2 - 17.2.2 Nanocellulose: Synthesis Process [Seite 553]
23.2.2.1 - 17.2.2.1 Conventional Acid Hydrolysis Process [Seite 553]
23.2.3 - 17.2.3 Nanocellulose: Limitations [Seite 554]
23.2.3.1 - 17.2.3.1 Single Particles Dispersion [Seite 554]
23.2.3.2 - 17.2.3.2 Barrier Properties [Seite 554]
23.2.3.3 - 17.2.3.3 Permeability Properties [Seite 555]
23.3 - 17.3 Nanocellulose: Chemical Functionalization [Seite 555]
23.3.1 - 17.3.1 Organic Compounds Functionalization [Seite 556]
23.3.1.1 - 17.3.1.1 Molecular Functionalization [Seite 556]
23.3.1.2 - 17.3.1.2 Macromolecular Functionalization [Seite 560]
23.3.2 - 17.3.2 Nanocellulose: Inorganic Compounds Functionalization [Seite 563]
23.3.2.1 - 17.3.2.1 Nanocellulose-Titanium Oxide Functionalization [Seite 563]
23.3.2.2 - 17.3.2.2 Nanocellulose-Fluorine Functionalization [Seite 563]
23.3.2.3 - 17.3.2.3 Nanocellulose-Gold Functionalization [Seite 564]
23.3.2.4 - 17.3.2.4 Nanocellulose-Silver Functionalization [Seite 564]
23.3.2.5 - 17.3.2.5 Nanocellulose-Pd Functionalization [Seite 564]
23.3.2.6 - 17.3.2.6 Nanocellulose-CdS Functionalization [Seite 565]
23.4 - 17.4 Applications of Functionalized Nanocellulose [Seite 565]
23.4.1 - 17.4.1 Wastewater Treatment [Seite 565]
23.4.2 - 17.4.2 Biomedical Applications [Seite 566]
23.4.3 - 17.4.3 Biosensor and Bioimaging [Seite 566]
23.4.4 - 17.4.4 Catalysis [Seite 567]
23.5 - 17.5 Conclusion [Seite 567]
23.6 - Acknowledgment [Seite 568]
23.7 - References [Seite 568]
24 - 18 Halloysite-Based Bionanocomposites [Seite 581]
24.1 - 18.1 Introduction [Seite 581]
24.2 - 18.2 Biodegradable Polymers [Seite 583]
24.2.1 - 18.2.1 Cellulose [Seite 583]
24.2.2 - 18.2.2 Chitosan [Seite 584]
24.2.3 - 18.2.3 Starch [Seite 585]
24.2.4 - 18.2.4 Alginate [Seite 586]
24.2.5 - 18.2.5 Pectin [Seite 586]
24.3 - 18.3 Natural Inorganic Filler: Halloysite Nanotubes [Seite 587]
24.3.1 - 18.3.1 Functionalization of HNTs [Seite 589]
24.3.1.1 - 18.3.1.1 Functionalization of External Surface [Seite 589]
24.3.1.2 - 18.3.1.2 Functionalization of the Lumen [Seite 591]
24.3.2 - 18.3.2 Composites Structured with Halloysite [Seite 592]
24.4 - 18.4 Bionanocomposites [Seite 593]
24.4.1 - 18.4.1 HNT-Biopolymer Nanocomposite Formation [Seite 593]
24.4.2 - 18.4.2 Properties of HNTs-Biopolymer Nanocomposites [Seite 594]
24.4.2.1 - 18.4.2.1 Bionanocomposites Surface Morphology [Seite 595]
24.4.2.2 - 18.4.2.2 Bionanocomposites Mechanical and Thermal Response [Seite 597]
24.5 - 18.5 Applications of HNT/Polysaccharide Nanocomposites [Seite 600]
24.6 - 18.6 Conclusions [Seite 602]
24.7 - References [Seite 603]
25 - 19 Nanostructurated Composites Based on Biodegradable Polymers and Silver Nanoparticles [Seite 609]
25.1 - 19.1 Introduction [Seite 609]
25.2 - 19.2 Silver Nanoparticles [Seite 610]
25.3 - 19.3 Applications of Silver Nanoparticles [Seite 612]
25.4 - 19.4 Silver Nanoparticle Composites [Seite 618]
25.4.1 - 19.4.1 In situ and ex situ Strategies for AgNPs-Based Composites with Polymer Matrix [Seite 618]
25.4.2 - 19.4.2 Other AgNPs Composites [Seite 623]
25.5 - 19.5 Applications of Silver Nanoparticles Composites [Seite 624]
25.5.1 - 19.5.1 Active Substance Delivery Composites [Seite 624]
25.5.2 - 19.5.2 Antimicrobial Composites [Seite 627]
25.6 - 19.6 Conclusions and Future Prospectives [Seite 631]
25.7 - Acknowledgments [Seite 632]
25.8 - References [Seite 632]
26 - 20 Starch-Based Biomaterials and Nanocomposites [Seite 647]
26.1 - 20.1 Introduction [Seite 647]
26.2 - 20.2 Starch: Structure and Characteristics [Seite 649]
26.3 - 20.3 Applicability of Starch in Food Industry [Seite 651]
26.3.1 - 20.3.1 Starch Biomaterials: Films, Coatings, and Blends [Seite 653]
26.3.2 - 20.3.2 Reinforced Materials [Seite 655]
26.3.3 - 20.3.3 Starch Nanoparticles [Seite 656]
26.4 - 20.4 Conclusion [Seite 656]
26.5 - References [Seite 657]
27 - 21 Green Nanocomposites-Based on PLA and Natural Organic Fillers [Seite 661]
27.1 - 21.1 Introduction [Seite 661]
27.2 - 21.2 Poly(lactic acid) (PLA) [Seite 662]
27.3 - 21.3 Natural Organic Nanofillers [Seite 664]
27.3.1 - 21.3.1 Cellulose [Seite 665]
27.3.1.1 - 21.3.1.1 Main Derivatization Methods Used to Increase Cellulose Affinity to PLA [Seite 667]
27.3.2 - 21.3.2 Chitin [Seite 669]
27.3.3 - 21.3.3 Starch [Seite 670]
27.4 - 21.4 Bionanocomposites Based on PLA [Seite 672]
27.4.1 - 21.4.1 PLA/cellulose Nanocomposites [Seite 672]
27.4.1.1 - 21.4.1.1 Preparation [Seite 672]
27.4.1.2 - 21.4.1.2 Properties [Seite 675]
27.4.1.3 - 21.4.1.3 Degradation [Seite 677]
27.4.2 - 21.4.2 PLA/chitin Nanocomposites [Seite 678]
27.4.2.1 - 21.4.2.1 Preparation [Seite 678]
27.4.2.2 - 21.4.2.2 Properties [Seite 679]
27.4.3 - 21.4.3 PLA/starch Nanocomposites [Seite 680]
27.4.3.1 - 21.4.3.1 Preparation [Seite 680]
27.4.3.2 - 21.4.3.2 Properties [Seite 681]
27.5 - 21.5 Conclusions [Seite 683]
27.6 - References [Seite 683]
28 - 22 Chitin and Chitosan-Based (NANO) Composites [Seite 695]
28.1 - 22.1 Introduction [Seite 696]
28.1.1 - 22.1.1 Chitin [Seite 696]
28.1.2 - 22.1.2 Chitosan [Seite 697]
28.2 - 22.2 Chitin and Chitosan Properties and Processing [Seite 698]
28.3 - 22.3 Preparation and Characterization of Ct and Cs Composites: An Overview [Seite 699]
28.4 - 22.4 Ct- and Cs-Metal Composites [Seite 703]
28.5 - 22.5 Ct and Cs-Inorganic Composites [Seite 709]
28.5.1 - 22.5.1 Food Packaging [Seite 709]
28.5.2 - 22.5.2 Membranes [Seite 709]
28.5.3 - 22.5.3 Biomedical Uses [Seite 709]
28.5.4 - 22.5.4 Environmental Remediation [Seite 710]
28.6 - 22.6 Composites Based on Ct and Cs Whiskers [Seite 711]
28.7 - 22.7 Overview, Perspectives, and Conclusion [Seite 714]
28.8 - References [Seite 715]
29 - Index [Seite 725]
30 - EULA [Seite 737]

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

220,99 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen