Handbook of Composites from Renewable Materials, Volume 1, Structure and Chemistry

 
 
Standards Information Network (Verlag)
  • erschienen am 30. Dezember 2016
  • |
  • 570 Seiten
 
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-1-119-22423-5 (ISBN)
 
The Handbook of Composites From Renewable Materials comprises a set of 8 individual volumes that brings an interdisciplinary perspective to accomplish a more detailed understanding of the interplay between the synthesis, structure, characterization, processing, applications and performance of these advanced materials. The handbook covers a multitude of natural polymers/ reinforcement/ fillers and biodegradable materials. Together, the 8 volumes total at least 5000 pages and offers a unique publication.
Volume 1 is solely focused on the Structure and Chemistry of renewable materials. Some of the important topics include but not limited to: carbon fibers from sustainable resources; polylactic acid composites and composite foams based on natural fibres; composites materials from other than cellulosic resources; microcrystalline cellulose and related polymer composites; tannin-based foam; renewable feedstock vanillin derived polymer and composites; silk biocomposites; bio-derived adhesives and matrix polymers; biomass based formaldehyde-free bio-resin ; isolation and characterization of water soluble polysaccharide; bio-based fillers; keratin based materials in biotechnology; structure of proteins adsorbed onto bioactive glasses for sustainable composite; effect of filler properties on the antioxidant response of starch composites; composite of chitosan and its derivate; magnetic biochar from discarded agricultural biomass; biodegradable polymers for protein and peptide conjugation; polyurethanes and polyurethane composites from bio-based / recycled components.
weitere Ausgaben werden ermittelt
Vijay Kumar Thakur is a Lecturer in the School of Aerospace, Transport and Manufacturing Engineering, Cranfield University, UK. Previously he had been a Staff Scientist in the School of Mechanical and Materials Engineering at Washington State University, USA. He spent his postdoctoral study in Materials Science & Engineering at Iowa State University, USA, and gained his PhD in Polymer Chemistry (2009) at the National Institute of Technology, India. He has published more than 90 SCI journal research articles in the field of polymers/materials science and holds one US patent. He has also published about 25 books and 33 book chapters on the advanced state-of-the-art of polymers/materials science with numerous publishers, including Wiley-Scrivener.
Manju Kumar Thakur has been working as an Assistant Professor of Chemistry at the Division of Chemistry, Govt. Degree College Sarkaghat Himachal Pradesh University, Shimla, India since 2010. She received her PhD in Polymer Chemistry from the Chemistry Department at Himachal Pradesh University. She has deep experience in the field of organic chemistry, biopolymers, composites/ nanocomposites, hydrogels, applications of hydrogels in the removal of toxic heavy metal ions, drug delivery etc. She has published more than 30 research papers in peer-reviewed journals, 25 book chapters and co-authored five books all in the field of polymeric materials.
Michael R. Kessler is a Professor and Director of the School of Mechanical and Materials Engineering at Washington State University, USA. He is an expert in the mechanics, processing, and characterization of polymer matrix composites and nanocomposites. His honours include the Army Research Office Young Investigator Award, the Air Force Office of Scientific Research Young Investigator Award, the NSF CAREER Award, and the Elsevier Young Composites Researcher Award from the American Society for Composites. He has more than 150 journal articles and 5800 citations, holds 6 patents, published 5 books on the synthesis and characterization of polymer materials, and presented at least 200 talks at national and international meetings.
  • Cover
  • Title Page
  • Copyright Page
  • Dedication
  • Contents
  • Preface
  • 1 Carbon Fibers from Sustainable Resources
  • 1.1 Introduction
  • 1.2 Lignin and Other Sustainable Resources
  • 1.3 Carbon Fibers from Lignin
  • 1.4 Carbon Fibers from Other Sustainable Resources
  • 1.5 Concluding Remarks
  • References
  • 2 Polylactic Acid Composites and Composite Foams Based on Natural Fibers
  • 2.1 Introduction
  • 2.2 PLA-Natural Fibers Composites
  • 2.2.1 Morphology
  • 2.2.2 Thermal Properties of PLA-Natural Fiber Composites
  • 2.2.3 Mechanical Properties
  • 2.3 PLA Composite Foams with Natural Fibers
  • 2.3.1 Batch Processing
  • 2.3.2 Extrusion
  • 2.3.3 Injection Molding
  • 2.4 Thermal Annealing of PLA Composites
  • 2.5 Conclusions
  • References
  • 3 Microcrystalline Cellulose and Related Polymer Composites: Synthesis, Characterization and Properties
  • 3.1 Introduction
  • 3.2 Cellulose: Structure and Sources
  • 3.2.1 Structure of Cellulose
  • 3.2.2 Sources
  • 3.3 Microcrystalline Cellulose
  • 3.3.1 Introduction
  • 3.3.2 Isolation of MCC
  • 3.3.3 Types of MCC
  • 3.3.3.1 Powdered MCC
  • 3.3.3.2 Colloidal MCC
  • 3.4 Characterization and Properties of Microcrystalline Cellulose
  • 3.4.1 Chemical Structure
  • 3.4.2 Morphology and Particle Size
  • 3.4.3 Degree of Polymerization
  • 3.4.4 Degree of Crystallinity
  • 3.4.5 Thermal Stability
  • 3.4.6 Mechanical Properties
  • 3.4.7 Surface Chemistry
  • 3.5 MCC-Based Composites
  • 3.5.1 Classification of Polymer Composite Materials
  • 3.5.2 Production and Properties of MCC-based Composites
  • 3.6 Application of Composite Materials Based on MCC
  • 3.7 Conclusions
  • Acknowledgments
  • References
  • 4 Tannin-Based Foams: The Innovative Material for Insulation Purposes
  • 4.1 First Tannin Foams and their Characterization
  • 4.2 Formulation and Process Modifications
  • 4.2.1 Hardeners
  • 4.2.2 Furfuryl Alcohol
  • 4.2.3 Aromatic Backbone
  • 4.2.4 Blowing Agent
  • 4.2.5 Catalyst
  • 4.2.6 Additive for Improving Specific Properties
  • 4.2.7 Process Modification
  • 4.3 Composite Materials: Tannin-Based Panels
  • 4.4 Conclusions
  • References
  • 5 Renewable Feedstock Vanillin-Derived Polymer and Composites: Structure Property Relationship
  • 5.1 Introduction
  • 5.1.1 History of Vanillin
  • 5.1.2 Occurrence
  • 5.2 Vanillin Production
  • 5.2.1 Vanillin Extraction via Natural Route
  • 5.2.2 Biosynthesis of Vanillin
  • 5.2.3 Chemical Synthesis of Vanillin
  • 5.3 Some Common Applications of Vanillin
  • 5.3.1 Food Production
  • 5.3.2 Vanillin in Beverages
  • 5.3.3 Cosmetics and Pharmaceutical Industries
  • 5.3.4 Agriculture and Animal Feed
  • 5.3.5 Other Industries
  • 5.4 Vanillin-Derived Polymers
  • 5.4.1 Poly Acetyl Polymers
  • 5.4.2 Poly Esters Polymers
  • 5.4.3 Polyaldimines
  • 5.4.4 Poly Benzoxazines
  • 5.4.5 ADMET and Thiol-ene Polymerization (Poly Alkenes)
  • 5.4.5.1 ADMET Polymers
  • 5.4.6 Epoxy Polymers
  • 5.4.7 Tri-Ethyl-Benzyl-Ammonium Chloride (TEBAC)
  • 5.5 Vanillin-Based Composites
  • 5.6 Applications of Vanillin-Based Polymers and Composites
  • 5.7 Conclusion
  • References
  • 6 Biomass-Based Formaldehyde-Free Bio-Resin for Wood Panel Process
  • 6.1 Introduction
  • 6.1.1 Wood Composite
  • 6.1.2 Biomass-Based Adhesives
  • 6.2 Market Analysis of Biomass Based Adhesives
  • 6.3 Bio-Based Adhesive Formulations
  • 6.3.1 Starch-Based Adhesive
  • 6.3.2 Lignin
  • 6.3.3 Tannin
  • 6.3.4 Soya Protein-Based Wood Adhesives
  • 6.3.5 Biomimetic Adhesives
  • 6.3.6 Liquefied Woody Biomass
  • 6.3.7 Chicken Feather
  • 6.3.8 Natural Fiber Modified with Adhesive Functions
  • 6.4 Cambond Biomass Based Adhesives
  • 6.4.1 Distiller's Dry Grain and Solubles (DDGS) as the Biomass
  • 6.4.2 Algal Biomass
  • 6.4.2.1 Macroalgae
  • 6.4.2.2 Microalgae
  • 6.4.3 Formulation of Cambond Biomass-Based Bio-Resin (DIGLUE and ALGLUE)
  • 6.4.3.1 Materials and Methods
  • 6.4.3.2 Preliminary Particle Board Preparation Method
  • 6.4.3.3 Results and Discussion
  • 6.5 Bio-composites Based on Cambond Bio-Resin
  • 6.6 Final Remarks
  • References
  • 7 Bio-Derived Adhesives and Matrix Polymers for Composites
  • 7.1 Introduction
  • 7.2 Glycerol
  • 7.3 Tannins
  • 7.4 Lignin
  • 7.5 Polysaccharides
  • 7.5.1 Starch
  • 7.5.2 Cellulose
  • 7.5.3 Chitosan
  • 7.6 Proteins
  • 7.7 Oils
  • 7.8 Microorganism-produced Biopolymers
  • 7.8.1 Polyhydroxyalkonates (PHAs)
  • 7.8.2 Polylactic Acid
  • References
  • 8 Silk Biocomposites: Structure and Chemistry
  • 8.1 Introduction
  • 8.2 Spider Silk Protein
  • 8.2.1 Types, Structures and Properties
  • 8.2.2 Computational Research
  • 8.2.3 Recombinant Spider Silk
  • 8.3 Bombyx mori Silk
  • 8.3.1 Structures and Chemistry
  • 8.3.2 Physical Properties of B. mori Silk
  • 8.3.3 Spectroscopy of Silks
  • 8.3.4 Silk-Water Interactions
  • 8.3.5 Degumming
  • 8.4 Silk Biocomposites: Applications
  • 8.4.1 Composite Textiles
  • 8.4.2 Biomedical Composites and Biomaterials
  • 8.4.3 Structural Biocomposites
  • References
  • 9 Isolation and Characterisation of Water Soluble Polysaccharide from Colocasia esculenta Tubers
  • 9.1 Introduction
  • 9.2 Materials and Methods
  • 9.2.1 Collection of Plant Material
  • 9.2.2 Isolation of Polysaccharide
  • 9.2.3 Purification of Polysaccharide
  • 9.2.4 Characterization of Polysaccharide
  • 9.2.4.1 Organoleptic Evaluation
  • 9.2.4.2 Preliminary Phytochemical Evaluation
  • 9.2.5 Physicochemical Evaluation
  • 9.2.5.1 Solubility
  • 9.2.5.2 Powder Flow Characteristics
  • 9.2.5.3 pH
  • 9.2.5.4 Loss on Drying (LOD)
  • 9.2.5.5 Specific Gravity
  • 9.2.5.6 Swelling Capacity
  • 9.2.5.7 Viscosity
  • 9.2.6 Differential Scanning Colorimeter (DSC)
  • 9.2.7 X-ray Powder Diffraction (XRD)
  • 9.2.8 Estimation of Total Sugar Content
  • 9.2.9 Identification of Gum Components by Thin Layer Chromatography
  • 9.2.10 Investigation of Structure of the Polysaccharide
  • 9.2.11 Rheological Study of C. esculenta Gum
  • 9.3 Results and Discussion
  • 9.4 Conclusions
  • Acknowledgements
  • References
  • 10 Bio-Based Fillers for Environmentally Friendly Composites
  • 10.1 Introduction
  • 10.2 Bio-Based Fillers/Reinforcements
  • 10.2.1 Benefits and Drawbacks of Bio-Based Fillers
  • 10.2.2 Surface Modification of Natural Fibers
  • 10.2.3 Extraction of Cellulose and/or Cellulose Nanowhiskers from Bio-Fillers
  • 10.2.4 Lignin Bio-Fillers
  • 10.2.5 Rice Husk Bio-Fillers
  • 10.3 Bio-based Fillers Reinforced Biopolymer Composites
  • 10.3.1 Natural Fiber Composites
  • 10.3.2 Nano-Cellulose/Cellulose Whisker Composites
  • 10.3.3 Lignin Composites
  • 10.3.4 Rice Husk (RH) Composites
  • 10.4 Applications of Bio-Based Composites
  • 10.5 Summary
  • References
  • 11 Keratin-Based Materials in Biotechnology
  • 11.1 Introduction
  • 11.2 Biopolymers
  • 11.3 Classification of Biopolymers
  • 11.4 Occurrence and Physicochemical Properties of Keratin
  • 11.5 Keratin-based Biomaterials
  • 11.6 Bio-composites
  • 11.7 Properties of Bio-composites for Bio-medical Applications
  • 11.7.1 Biocompatibility
  • 11.7.2 Biodegradability
  • 11.8 Biomedical and Biotechnological Applications
  • 11.9 Potential Applications
  • 11.9.1 Wound Healing
  • 11.9.2 Tissue Engineering
  • 11.9.3 Biosensors
  • 11.10 Concluding Remarks
  • References
  • 12 Pineapple Leaf Fiber: A High Potential Reinforcement for Green Rubber and Plastic Composites
  • 12.1 Introduction
  • 12.2 Structure of Pineapple Leaf and Pineapple Leaf Fiber
  • 12.3 Conventional Methods of Fiber Extraction
  • 12.3.1 Hand Scraping
  • 12.3.2 Water Retting
  • 12.3.3 Machine Decortication
  • 12.4 The Novel Mechanical Grinding Method
  • 12.4.1 Process Description
  • 12.4.2 Characteristic of PALF and By-product
  • 12.4.3 Advantages and Disadvantages of the Process
  • 12.5 Potential Applications of PALF as Reinforcement for Polymer Matrix Composites
  • 12.5.1 A Concept for Better Utilization of PALF in Composites
  • 12.5.2 Rubber Reinforcement
  • 12.5.3 Plastic Reinforcement
  • 12.5.4 Other Types of Reinforcement
  • 12.6 Concluding Remarks
  • Acknowledgements
  • References
  • 13 Insights into the Structure of Proteins Adsorbed onto Bioactive Glasses
  • 13.1 Introduction
  • 13.2 Bioactive Glasses as Renewable Materials
  • 13.3 Proteins Structure
  • 13.3.1 The Most Used Proteins in Testing the In vitro Interactions with Bioactive Glasses
  • 13.4 Suitable Methods for Proteins Investigation
  • 13.4.1 FTIR Spectroscopy on Proteins
  • 13.4.1.1 FTIR Imaging Spectroscopy
  • 13.4.1.2 FTIR Spectra of Proteins
  • 13.4.1.3 Secondary Structure of Proteins Obtained by FTIR Spectra
  • 13.4.2 Scanning Electron Microscopy (SEM) Coupled with Electron Energy Dispersive X-ray (EDX) Spectroscopy of Proteins
  • 13.5 Interaction of Protein with Bioactive Glasses
  • 13.5.1 Protein Adsorption onto Bioactive Glass Surfaces in Terms of Biocompatibility
  • 13.5.2 Relation Between the Attached Proteins on Glass Surface and Bioactivity
  • 13.5.3 Secondary Structure of Proteins Obtained from FT-IR Spectra
  • 13.6 Summary
  • Acknowledgements
  • References
  • 14 Effect of Filler Properties on the Antioxidant Response of Thermoplastic Starch Composites
  • 14.1 Introduction
  • 14.2 Starch-Based Nanocomposites
  • 14.2.1 Starch-Based Nanocomposites with Natural Antioxidant
  • 14.2.2 Starch-Based Nanocomposites with Bactericidal Fillers
  • 14.2.2.1 Starch/Zinc Oxide Nanocomposites
  • 14.2.2.2 Starch/Titanium Oxide Nanocomposites
  • 14.2.2.3 Starch/Silver Nanocomposites
  • 14.2.3 Starch-based Nanocomposites with Natural Filler and Bactericidal Fillers
  • 14.3 Regulatory Aspect
  • 14.4 Conclusions and Outlook
  • Acknowledgements
  • References
  • 15 Preparation and Application of the Composite from Chitosan
  • 15.1 Introduction
  • 15.2 Composites from Chitosan and Natural Polymers
  • 15.2.1 Composites from Chitosan and Collagen
  • 15.2.2 Composites from Chitosan and Gelatin
  • 15.2.3 Composites from Chitosan and Chondroitin Sulfate
  • 15.2.4 Composites from Chitosan and Hyaluronic Acid
  • 15.2.5 Composites from Chitosan and Heparin
  • 15.2.6 Composites from Chitosan and Glucomannan
  • 15.3 Composites from Chitosan and Synthetic Polymers
  • 15.3.1 Composites from Chitosan and Polyurethanes
  • 15.3.2 Composites from Chitosan and Poly (Lactic Acid)
  • 15.3.3 Composites from Chitosan and Polyvinyl Alcohol
  • 15.3.4 Composites from Chitosan and Poly(?-Glutamic Acid)
  • 15.4 Composites from Chitosan and Biomacromolecules
  • 15.4.1 Composites from Chitosan and DNA or SiRNA
  • 15.4.2 Composites from Chitosan and Peptides
  • 15.4.3 Composites from Chitosan and Liposomes
  • 15.5 Composites from Chitosan and Inorganic Components
  • 15.5.1 Composites from Chitosan and Hydroxyapatite
  • 15.5.2 Composites from Chitosan and Calcium Carbonate
  • 15.5.3 Composites from Chitosan and Silicon Dioxide
  • 15.5.4 Composites from Chitosan and Bioactive Glasses
  • 15.5.5 Composites from Chitosan and Fe3O4
  • 15.5.6 Composites from Chitosan and Gold Nanoparticles
  • 15.5.7 Composites from Chitosan and Silver Nanoparticles
  • 15.6 Composites from Chitosan and Carbon Materials
  • 15.6.1 Composites from Chitosan and Activated Carbon
  • 15.6.2 Composites from Chitosan and Carbon Nanotubes
  • 15.6.3 Composites from Chitosan and Graphene
  • Acknowledgments
  • References
  • 16 Overview on Synthesis of Magnetic Bio Char from Discarded Agricultural Biomass
  • 16.1 Introduction
  • 16.2 Magnetic Bio Char
  • 16.3 Synthesis of Magnetic Bio Char
  • 16.3.1 Materials
  • 16.3.2 Synthesis Techniques of Magnetic Bio Char
  • 16.3.2.1 Synthesis of Magnetic Bio Char by Pyrolysis of Agriculture Waste
  • 16.3.2.2 Synthesis of Magnetic Bio Char by Chemical Precipitation
  • 16.3.2.3 Synthesis of Magnetic Bio Char by High Temperature Treatment of Agriculture Waste Char/Activated Carbon
  • 16.3.2.4 Synthesis of Magnetic Bio Char by Encapsulation using Bio-Polymer
  • 16.3.2.5 Synthesis of Magnetic Bio Char by Microwave Heating
  • 16.3.2.6 Synthesis of Magnetic Bio Char Composites
  • 16.4 Characteristics of Magnetic Bio Char
  • 16.4.1 Surface Area Characteristics
  • 16.4.2 Magnetic Characteristics
  • 16.5 Applications of Magnetic Bio Char
  • 16.6 Challenges and Future Scope of Magnetic Bio Char
  • 16.7 Summary
  • Acknowledgement
  • References
  • 17 Polyurethanes Foams from Bio-Based and Recycled Components
  • 17.1 Introduction
  • 17.2 Experiments
  • 17.2.1 Raw Materials
  • 17.2.2 Polyol Synthesis
  • 17.2.3 Characterization of Polyols
  • 17.2.4 Preparation of Polyurethane Rigid Foams
  • 17.2.5 Characterization of Rigid Polyurethane Foams
  • 17.3 Results and Discussion
  • 17.3.1 Characterization of Polyols
  • 17.3.2 Formation of PU Rigid Foams
  • 17.3.3 Cellular Structure of PU Rigid Foams
  • 17.3.4 Compression Strength of PU Rigid Foams
  • 17.3.5 FTIR of PU Rigid Foams
  • 17.4 Conclusions
  • Acknowledgements
  • References
  • 18 Biodegradable Polymers for Protein and Peptide Therapeutics: Next Generation Delivery Systems
  • 18.1 Introduction
  • 18.2 Protein Therapeutics and Their Challenges
  • 18.2.1 Asparaginase
  • 18.2.2 Adenosine Deaminase
  • 18.2.3 Granulocyte Colony-Stimulating Factor
  • 18.2.4 Anti-Tumor Necrosis Factor
  • 18.2.5 Interferons
  • 18.2.6 Growth Hormone Antagonist
  • 18.2.7 Uricase
  • 18.2.8 Erythropoiesis Stimulating Agent
  • 18.3 Biodegradable Polymers for Conjugation
  • 18.4 PEGylated Protein Therapeutics
  • 18.4.1 Basic Features and Properties of PEG
  • 18.4.2 Critical Factors for Protein PEGylation: PEG Structure and Size
  • 18.4.3 Chemistry and Different Sites of PEGylation
  • 18.4.3.1 PEGylation of Amine Group
  • 18.4.3.2 PEGylation of Thiol Group
  • 18.4.3.3 Disulfide Bridging PEGylation of Proteins
  • 18.4.4 Enzymatic PEGylation
  • 18.4.4.1 Proteins Modified by TGase PEGylation
  • 18.4.5 PEGylation of Proteins Containing Unnatural Amino Acid
  • 18.4.6 Non-Covalent PEGylation
  • 18.4.7 Releasable of PEGylation
  • 18.4.7.1 Aromatic Linkers (BE Series)
  • 18.4.7.2 Synthetic BE Linkers
  • 18.4.7.3 Aliphatic Linkers (Bicin Linkers)
  • 18.4.7.4 B-alanine Linkers
  • 18.4.8 Pharmacology of PEGylation
  • 18.4.9 Emerging PEGylated Drugs
  • 18.4.9.1 PEGylated hCH (ARX-201)
  • 18.4.9.2 PEG-G-CSF (DA-3031)
  • 18.4.9.3 PEG-IFN- a-2a (DA-3021)
  • 18.4.9.4 PEG-GLP-1
  • 18.4.9.5 PEG-Growth Hormone Releasing Factor (PEG-GRF)
  • 18.4.9.6 PEG-Salmon Calcitonin
  • 18.4.9.7 PEG-Uricase
  • 18.4.9.8 PEG-arginine Deiminase (ADI)
  • 18.4.10 Limitations of PEGylation
  • 18.4.11 Emerging Techniques Alternative to PEGylation
  • 18.5 Glycosylation of Proteins
  • 18.5.1 Types of Glycosylation In vivo
  • 18.5.2 Effect of Glycosylation on Proteins
  • 18.5.3 Polysialic Acid (PSA)-Protein Conjugates
  • 18.5.3.1 Polysialic Acid-catalase Conjugates
  • 18.5.3.2 Polysialic Acid-asparaginase Conjugates
  • 18.5.3.3 Polysialic Acid-insulin Conjugates
  • 18.5.3.4 Polysialic Acid-single Chain Fv Fragment Conjugates
  • 18.5.3.5 Polysialic Acid-cytokine Conjugates
  • 18.5.3.6 Polysialic Acid-G-CSF Conjugates
  • 18.5.3.7 Polysialic Acid-erythropoietin Conjugates
  • 18.5.3.8 Polysialic Acid-IgG Fab Fragments Conjugate
  • 18.6 Polyglycerols (PG)-Protein Conjugates
  • 18.6.1 Polyglycerol-Ovalbumin Peptide Conjugates
  • 18.6.2 Polyglycerol-Arginine-Glycine-Aspartic Acid (RGD) Peptide Conjugates
  • 18.7 Dendrimer-Protein Conjugates
  • 18.7.1 PAMAM-Trypsin and Trypsin Inhibitor Conjugates
  • 18.7.2 PAMAM-a4ß1 Integrin Binding Peptide Conjugates
  • 18.7.3 Porphyrin Dendrimer-Glucose Oxidase Conjugates
  • 18.8 HESylation of Proteins
  • 18.8.1 HES-Erythropoietin Mimetic Peptide (AGEM400 (HES)) Conjugate
  • 18.8.2 HES-Anakinra Conjugates
  • 18.8.3 HES-G-CSF Conjugates
  • 18.9 Dextran-Protein Conjugates
  • 18.9.1 Dextran-Asparaginase Conjugates
  • 18.9.2 Dextran-Carboxypeptidase G2 Conjugates
  • 18.9.3 Dextran-Uricase Conjugates
  • 18.9.4 Dextran-Insulin Conjugates
  • 18.9.5 Dextran-Hemoglobin Conjugates
  • 18.10 Dextrin-Protein Conjugates
  • 18.10.1 Dextrin-rhEGF Conjugates
  • 18.10.2 Dextrin-Trypsin and Melanocyte Stimulating Hormone (MSH) Conjugates
  • 18.10.3 Dextrin-Phospholipase A2
  • 18.11 Hyaluronic Acid (HA)-Protein Conjugates
  • 18.11.1 Hyaluronic Acid-Interferon a Conjugate
  • 18.11.2 Hyaluronic Acid-hGH Conjugate
  • 18.11.3 Hyaluronic Acid-Insulin Conjugate
  • 18.11.4 Hyaluronic Acid-Trypsin
  • 18.11.5 Hyaluronic Acid-EGF Conjugate
  • 18.11.6 Hyaluronic Acid-Exendin 4 Conjugates
  • 18.11.7 Hyaluronic Acid-anti-Flt1 Peptide Conjugates
  • 18.11.8 Hyaluronic Acid-Superoxide Dismutase Conjugates
  • 18.12 Some Other Polymer-Protein Conjugates
  • 18.13 PASylation
  • 18.14 Conclusion and Future Perspectives
  • Abbreviations
  • References
  • Index
  • EULA

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

220,99 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen