Handbook of Composites from Renewable Materials, Physico-Chemical and Mechanical Characterization

 
 
Standards Information Network (Verlag)
  • 3. Auflage
  • |
  • erschienen am 26. Januar 2017
  • |
  • 688 Seiten
 
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-1-119-22432-7 (ISBN)
 
The Handbook of Composites From Renewable Materials comprises a set of 8 individual volumes that brings an interdisciplinary perspective to accomplish a more detailed understanding of the interplay between the synthesis, structure, characterization, processing, applications and performance of these advanced materials. The handbook covers a multitude of natural polymers/ reinforcement/ fillers and biodegradable materials. Together, the 8 volumes total at least 5000 pages and offers a unique publication.
This 3rd volume of the Handbook is solely focused on the Physico-Chemical and Mechanical Characterization of renewable materials. Some of the important topics include but not limited to: structural and biodegradation characterization of supramolecular PCL/HAP nano-composites; different characterization of solid bio-fillers based agricultural waste material; poly (ethylene-terephthalate) reinforced with hemp fibers; poly (lactic acid) thermoplastic composites from renewable materials; chitosan -based composite materials: fabrication and characterization; the use of flax fiber reinforced polymer (FFRP) composites in the externally reinforced structures for seismic retrofitting monitored by transient thermography and optical techniques; recycling and reuse of fiber reinforced polymer wastes in concrete composite materials; analysis of damage in hybrid composites subjected to ballistic impacts; biofiber reinforced acrylated epoxidized soybean oil (AESO) biocomposites; biopolyamides and high performance natural fiber-reinforced biocomposites; impact of recycling on the mechanical and thermo-mechanical properties of wood fiber based HDPE and PLA composites; lignocellulosic fibers composites: an overview; biodiesel derived raw glycerol to value added products; thermo-mechanical characterization of sustainable structural composites; novel pH sensitive composite hydrogel based on functionalized starch/clay for the controlled release of amoxicillin; preparation and characterization of biobased thermoset polymers from renewable resources; influence of natural fillers size and shape into mechanical and barrier properties of biocomposites; composite of biodegradable polymer blends of PCL/PLLA and coconut fiber - the effects of ionizing radiation; packaging composite materials from renewable resources; physicochemical properties of ash based geopolymer concrete; a biopolymer derived from castor oil polyurethane; natural polymer based biomaterials; physical and mechanical properties of polymer membranes from renewable resources
3. Auflage
  • Englisch
  • Somerset
  • |
  • USA
John Wiley & Sons Inc
  • Für Beruf und Forschung
  • 12,63 MB
978-1-119-22432-7 (9781119224327)
weitere Ausgaben werden ermittelt
Vijay Kumar Thakur is a Lecturer in the School of Aerospace, Transport and Manufacturing Engineering, Cranfield University, UK. Previously he had been a Staff Scientist in the School of Mechanical and Materials Engineering at Washington State University, USA. He spent his Postdoctoral study in Materials Science & Engineering at Iowa State University, USA, and his PhD in Polymer Chemistry (2009) at the National Institute of Technology, India. He has published more than 90 SCI journal research articles in the field of polymers/materials science and holds one US patent. He has also published about 25 books and thirty three book chapters on the advanced state-of-the-art of polymers/materials science with numerous publishers, including Wiley-Scrivener.

Manju Kumar Thakur has been working as an Assistant Professor of Chemistry at the Division of Chemistry, Govt. Degree College Sarkaghat Himachal Pradesh University, Shimla, India since 2010. She received her PhD in Polymer Chemistry from the Chemistry Department at Himachal Pradesh University. She has rich experience in the field of organic chemistry, bio- polymers, composites/ nanocomposites, hydrogels, applications of hydrogels in the removal of toxic heavy metal ions, drug delivery etc. She has published more than 30 research papers in peer-reviewed journals, 25 book chapters and co-authored five books all in the field of polymeric materials.

Michael R. Kessler is a Professor of Mechanical and Materials Engineering at Washington State University, USA as well as the Director of the school. He is an expert in the mechanics, processing, and characterization of polymer matrix composites and nanocomposites. His honours include the Army Research Office Young Investigator Award, the Air Force Office of Scientific Research Young Investigator Award, the NSF CAREER Award, and the Elsevier Young Composites Researcher Award from the American Society for Composites. He has >150 journal papers and 5800 citations, holds 6 patents, published 5 books on the synthesis and characterization of polymer materials, and presented >200 talks at national and international meetings.
1 - Cover [Seite 1]
2 - Title Page [Seite 5]
3 - Copyright Page [Seite 6]
4 - Dedication [Seite 7]
5 - Contents [Seite 9]
6 - Preface [Seite 23]
7 - 1 Structural and Biodegradation Characterization of Supramolecular PCL/HAp Nanocomposites for Application in Tissue Engineering [Seite 25]
7.1 - 1.1 Introduction [Seite 25]
7.1.1 - 1.1.1 Hydroxyapatite: A Bioceramic of Renewable Resource [Seite 25]
7.2 - 1.2 Biomedical Applications of HAp [Seite 26]
7.3 - 1.3 Effect of HAp Particles on Biodegradation of PCL/HAp Composites [Seite 29]
7.4 - 1.4 Polycaprolactone [Seite 30]
7.5 - 1.5 Supramolecular Polymers and Supramolecular PCL [Seite 31]
7.6 - 1.6 Supramolecular Composites: PCL (UPy)2/HApUPy Composites [Seite 32]
7.6.1 - 1.6.1 Biodegradation Study of the PCL (UPy)2/HApUPy Composites [Seite 34]
7.6.1.1 - 1.6.1.1 In Vitro Degradation Study [Seite 34]
7.6.1.2 - 1.6.1.2 Water Uptake and Weight Loss [Seite 34]
7.6.1.3 - 1.6.1.3 Chemical Properties [Seite 35]
7.6.1.4 - 1.6.1.4 Thermal and Dynamic Mechanical Properties [Seite 35]
7.7 - 1.7 PCL(UPy)2/HApUPy Nanocomposites [Seite 41]
7.7.1 - 1.7.1 Biodegradation Study of PCL(UPy)2/HApUPy Nanocomposites [Seite 42]
7.8 - References [Seite 44]
8 - 2 Different Characterization of Solid Biofillers Based Agricultural Waste Materials [Seite 49]
8.1 - 2.1 Introduction [Seite 49]
8.2 - 2.2 Examples on Agricultural Waste Materials [Seite 50]
8.2.1 - 2.2.1 Rice Husk [Seite 50]
8.2.2 - 2.2.2 Olive Husk Powder [Seite 51]
8.2.3 - 2.2.3 Cellulose [Seite 54]
8.3 - 2.3 The Main Polymorphs of Cellulose [Seite 54]
8.4 - 2.4 Modification Methods of Agro-Biomass [Seite 55]
8.4.1 - 2.4.1 Physical Methods [Seite 55]
8.4.1.1 - 2.4.1.1 Conventional Drying Methods [Seite 55]
8.4.1.2 - 2.4.1.2 Microwave Heating [Seite 56]
8.4.2 - 2.4.2 Chemical Methods [Seite 56]
8.4.3 - 2.4.3 Cross-linking of the Cellulose Macromolecules [Seite 57]
8.4.3.1 - 2.4.3.1 Reaction with Formaldehyde [Seite 57]
8.4.3.2 - 2.4.3.2 Acetylation [Seite 57]
8.4.3.3 - 2.4.3.3 Polyisocyanates Coupling Agents [Seite 57]
8.4.3.4 - 2.4.3.4 Silane Coupling Agents [Seite 58]
8.5 - 2.5 Properties of Thermoplastics Reinforced with Untreated Wood Fillers [Seite 58]
8.6 - 2.6 Production of Nanocellulose [Seite 58]
8.6.1 - 2.6.1 Cellulose Whiskers [Seite 58]
8.6.2 - 2.6.2 Microfibrillated Cellulose [Seite 59]
8.6.3 - 2.6.3 Properties of Cellulose-Based Nanocomposites [Seite 60]
8.6.3.1 - 2.6.3.1 Mechanical Properties [Seite 60]
8.6.3.2 - 2.6.3.2 Thermal Properties [Seite 60]
8.6.3.3 - 2.6.3.3 Barrier Properties [Seite 61]
8.7 - 2.7 Processing of Wood Thermoplastic Composites [Seite 61]
8.8 - 2.8 Conclusion [Seite 62]
8.9 - References [Seite 62]
9 - 3 Poly (ethylene-terephthalate) Reinforced with Hemp Fibers: Elaboration, Characterization, and Potential Applications [Seite 67]
9.1 - 3.1 General Introduction to Biocomposite Materials [Seite 67]
9.2 - 3.2 PET-Hemp Fiber Composites [Seite 69]
9.2.1 - 3.2.1 Potential [Seite 69]
9.2.2 - 3.2.2 Challenges [Seite 71]
9.3 - 3.3 Methods of Elaboration and Characterization of PET-Hemp Fiber Composites [Seite 72]
9.3.1 - 3.3.1 Elaboration [Seite 72]
9.3.2 - 3.3.2 Melt Processing [Seite 73]
9.3.3 - 3.3.3 Characterization [Seite 74]
9.4 - 3.4 Properties of PET-Hemp Fiber Composites [Seite 74]
9.4.1 - 3.4.1 Mechanical Properties [Seite 74]
9.4.2 - 3.4.2 Thermostability [Seite 75]
9.4.3 - 3.4.3 Structural Properties [Seite 77]
9.4.4 - 3.4.4 Heat Capacities [Seite 78]
9.4.5 - 3.4.5 Relaxation Properties [Seite 79]
9.5 - 3.5 Applications of PET-Hemp Fiber Composites [Seite 81]
9.5.1 - 3.5.1 Applications Requiring Small Deformations [Seite 81]
9.5.2 - 3.5.2 Applications Requiring Large Deformations [Seite 81]
9.5.2.1 - 3.5.2.1 The Constitutive Equations [Seite 82]
9.5.2.2 - 3.5.2.2 The Free-forming Pressure Load [Seite 82]
9.5.2.3 - 3.5.2.3 The Simulation Assumptions [Seite 83]
9.5.2.4 - 3.5.2.4 The Numerical Free Inflation of PET-Hemp Fibers Composite Discs [Seite 85]
9.6 - 3.6 Conclusion and Future Prospects [Seite 88]
9.7 - References [Seite 88]
10 - 4 Poly(Lactic Acid) Thermoplastic Composites from Renewable Materials [Seite 93]
10.1 - 4.1 Introduction [Seite 93]
10.2 - 4.2 Poly(Lactic Acid) Production, Properties, and Processing [Seite 95]
10.2.1 - 4.2.1 Lactide [Seite 95]
10.2.2 - 4.2.2 PLA Polymerization [Seite 96]
10.2.3 - 4.2.3 PLA Properties and Processing [Seite 97]
10.3 - 4.3 Poly(Lactic Acid) Nanocomposites [Seite 98]
10.3.1 - 4.3.1 General Modifications [Seite 98]
10.3.2 - 4.3.2 Degradability [Seite 99]
10.3.3 - 4.3.3 Melt Rheology [Seite 102]
10.4 - 4.4 Poly(Lactic Acid) Natural Fibers-Reinforced Composites [Seite 103]
10.4.1 - 4.4.1 PLA/Kenaf-Reinforced Composites [Seite 103]
10.4.2 - 4.4.2 PLA/Flax-Reinforced Composites [Seite 106]
10.4.3 - 4.4.3 PLA/Jute-Reinforced Composites [Seite 107]
10.4.4 - 4.4.4 PLA/Hemp-Reinforced Composites [Seite 109]
10.4.5 - 4.4.5 PLA/Sisal-Reinforced Composites [Seite 110]
10.4.6 - 4.4.6 PLA/Wood Fiber-Reinforced Composites [Seite 112]
10.4.7 - 4.4.7 Other Natural Fibers/PLA-Reinforced Composites [Seite 113]
10.4.8 - 4.4.8 Recycling of Biocomposites [Seite 115]
10.5 - 4.5 Conclusions [Seite 117]
10.6 - References [Seite 117]
11 - 5 Chitosan-Based Composite Materials: Fabrication and Characterization [Seite 127]
11.1 - 5.1 Introduction [Seite 127]
11.2 - 5.2 Cs-Based Composite Materials [Seite 129]
11.3 - 5.3 Cs-Based Nanocomposites [Seite 129]
11.4 - 5.4 Characterization of Cs-Based Composites [Seite 154]
11.5 - 5.5 Environmental Concerns [Seite 154]
11.6 - 5.6 Future Prospects [Seite 154]
11.7 - References [Seite 157]
12 - 6 The Use of Flax Fiber-Reinforced Polymer (FFRP) Composites in the Externally Reinforced Structures for Seismic Retrofitting Monitored by Transient Thermography and Optical Techniques [Seite 161]
12.1 - 6.1 Introduction [Seite 161]
12.2 - 6.2 Experimental Setup [Seite 163]
12.2.1 - 6.2.1 Experimental Specimen with Artificial Defects [Seite 163]
12.2.2 - 6.2.2 Retrofitted Walls in the Faculty of Engineering, L'Aquila University [Seite 168]
12.2.3 - 6.2.3 Internal Wall Inspected by Square Pulse Thermography [Seite 170]
12.2.4 - 6.2.4 External Faculty Façade Solar Loading Thermography Inspection [Seite 172]
12.3 - 6.3 Conclusions [Seite 175]
12.4 - Acknowledgments [Seite 176]
12.5 - References [Seite 176]
13 - 7 Recycling and Reuse of Fiber Reinforced Polymer Wastes in Concrete Composite Materials [Seite 179]
13.1 - 7.1 Introduction [Seite 179]
13.2 - 7.2 Recycling Processes for Thermoset FRP Wastes [Seite 182]
13.2.1 - 7.2.1 Incineration and Co-incineration [Seite 182]
13.2.2 - 7.2.2 Thermal/Chemical Recycling [Seite 183]
13.2.2.1 - 7.2.2.1 Thermal Processes [Seite 183]
13.2.2.2 - 7.2.2.2 Chemical Processes [Seite 184]
13.2.3 - 7.2.3 Mechanical Recycling [Seite 185]
13.3 - 7.3 End-Use Applications for Mechanically Recycled FRP Wastes [Seite 188]
13.3.1 - 7.3.1 Concrete Materials Modified with FRP Recyclates [Seite 188]
13.4 - 7.4 Market Outlook and Future Perspectives [Seite 190]
13.5 - Acknowledgment [Seite 191]
13.6 - References [Seite 191]
14 - 8 Analysis of Damage in Hybrid Composites Subjected to Ballistic Impacts: An Integrated Non-Destructive Approach [Seite 199]
14.1 - 8.1 Introduction [Seite 200]
14.2 - 8.2 Lay-up Sequences and Manufacturing of Composite Materials [Seite 202]
14.3 - 8.3 Test Procedure [Seite 202]
14.4 - 8.4 Numerical Simulation [Seite 204]
14.4.1 - 8.4.1 Construction of the Models [Seite 207]
14.4.1.1 - 8.4.1.1 The Intercalated Case [Seite 209]
14.4.1.2 - 8.4.1.2 The Sandwich Case [Seite 211]
14.4.2 - 8.4.2 First Step of the Numerical Simulations [Seite 212]
14.4.2.1 - 8.4.2.1 Mesh [Seite 213]
14.4.3 - 8.4.3 Second Step of the Numerical Simulations [Seite 214]
14.5 - 8.5 Non-destructive Testing Methods and Related Techniques [Seite 215]
14.5.1 - 8.5.1 Near-infrared Reflectography (NIRR) Method [Seite 215]
14.5.2 - 8.5.2 Active Infrared Thermography (IRT) Method [Seite 216]
14.5.2.1 - 8.5.2.1 Principal Component Thermography (PCT) Technique [Seite 216]
14.5.2.2 - 8.5.2.2 Partial Least-Square Thermography (PLST) Technique [Seite 217]
14.6 - 8.6 Results and Discussion [Seite 218]
14.7 - 8.7 Conclusions [Seite 230]
14.8 - References [Seite 230]
15 - 9 Biofiber-Reinforced Acrylated Epoxidized Soybean Oil (AESO) Biocomposites [Seite 235]
15.1 - 9.1 Introduction [Seite 235]
15.2 - 9.2 Soybean Oil [Seite 237]
15.2.1 - 9.2.1 Epoxidized Soybean Oil [Seite 239]
15.2.2 - 9.2.2 Acrylated Epoxidized Soybean Oil [Seite 240]
15.3 - 9.3 Functionalization of Soy Oil Triglyceride [Seite 240]
15.3.1 - 9.3.1 Epoxidation [Seite 242]
15.3.2 - 9.3.2 Acrylation [Seite 243]
15.3.3 - 9.3.3 Green Chemistry in AESO Production [Seite 245]
15.3.4 - 9.3.4 Properties of AESO [Seite 245]
15.3.5 - 9.3.5 Modification of AESO [Seite 245]
15.3.6 - 9.3.6 Comonomers Used in Production of AESO Resins [Seite 248]
15.4 - 9.4 Manufacturing of AESO-Based Composites [Seite 251]
15.4.1 - 9.4.1 Components Used in Manufacturing of AESO-Based Composites [Seite 252]
15.4.1.1 - 9.4.1.1 Glass Fiber [Seite 252]
15.4.1.2 - 9.4.1.2 Natural Fibers [Seite 252]
15.4.2 - 9.4.2 Composite Production Methods [Seite 256]
15.4.3 - 9.4.3 Properties of Composites [Seite 257]
15.4.3.1 - 9.4.3.1 Vibration-Damping/Thermomechanical Properties [Seite 258]
15.4.3.2 - 9.4.3.2 Mechanical Properties of the Composites [Seite 262]
15.4.3.3 - 9.4.3.3 Flexural Properties [Seite 264]
15.4.3.4 - 9.4.3.4 Impact Properties [Seite 266]
15.4.3.5 - 9.4.3.5 Dielectric Properties [Seite 267]
15.4.3.6 - 9.4.3.6 Thermal Expansion [Seite 268]
15.4.3.7 - 9.4.3.7 Water Absorption of AESO Composites [Seite 269]
15.4.3.8 - 9.4.3.8 Climate Resistance [Seite 270]
15.4.3.9 - 9.4.3.9 AESO-Based Nanocomposites [Seite 271]
15.5 - 9.5 Targeted Applications [Seite 271]
15.6 - 9.6 Conclusion [Seite 271]
15.7 - Acknowledgments [Seite 272]
15.8 - References [Seite 272]
16 - 10 Biopolyamides and High-Performance Natural Fiber-Reinforced Biocomposites [Seite 277]
16.1 - 10.1 Introduction [Seite 277]
16.2 - 10.2 Polyamide Chemistry [Seite 280]
16.2.1 - 10.2.1 Bio-based Polyamide [Seite 280]
16.2.2 - 10.2.2 Properties of Polyamides [Seite 281]
16.2.3 - 10.2.3 Chemical Synthesis of Intermediates from Castor Beans [Seite 282]
16.2.3.1 - 10.2.3.1 Undecenoic Acid Pathway [Seite 283]
16.2.3.2 - 10.2.3.2 Sebacic Acid Pathway [Seite 284]
16.2.3.3 - 10.2.3.3 Decamethylene Diamine Pathway [Seite 284]
16.3 - 10.3 Overview of Current Applications of Polyamides [Seite 285]
16.4 - 10.4 Biopolyamide Reinforced with Natural Fibers [Seite 286]
16.5 - 10.5 Conclusion [Seite 292]
16.6 - References [Seite 292]
17 - 11 Impact of Recycling on the Mechanical and Thermo-Mechanical Properties of Wood Fiber Based HDPE and PLA Composites [Seite 295]
17.1 - 11.1 Introduction [Seite 295]
17.2 - 11.2 Experiments [Seite 299]
17.2.1 - 11.2.1 Materials [Seite 299]
17.2.2 - 11.2.2 Material Processing [Seite 300]
17.2.3 - 11.2.3 Experiment Design [Seite 301]
17.2.4 - 11.2.4 Test Methods [Seite 301]
17.2.4.1 - 11.2.4.1 Tensile Testing [Seite 301]
17.2.4.2 - 11.2.4.2 Flexural Testing [Seite 302]
17.2.4.3 - 11.2.4.3 Coefficient of Thermal Expansion (CTE) [Seite 302]
17.2.4.4 - 11.2.4.4 Heat Deflection Temperature (HDT) [Seite 302]
17.2.4.5 - 11.2.4.5 Dynamic Mechanical Analysis [Seite 302]
17.2.4.6 - 11.2.4.6 Izod Impact Test [Seite 302]
17.2.4.7 - 11.2.4.7 Melt Flow Index (MFI) [Seite 303]
17.2.4.8 - 11.2.4.8 Scanning Electron Microscopy [Seite 303]
17.2.4.9 - 11.2.4.9 Fiber Length Measurement [Seite 303]
17.3 - 11.3 Results and Discussion [Seite 303]
17.3.1 - 11.3.1 Effect of CA on the Mechanical and Thermo-Mechanical Properties [Seite 303]
17.3.2 - 11.3.2 Effect of Recycling on the Tensile Strength, and Flexural Strength [Seite 304]
17.3.3 - 11.3.3 Effect of Recycling on the HDT, Tensile Modulus, Flexural Modulus and Storage Modulus [Seite 306]
17.3.4 - 11.3.4 Effect of Recycling on the CTE and MFI [Seite 308]
17.3.5 - 11.3.5 Effect of Recycling on the Impact Resistance of Composites [Seite 309]
17.3.6 - 11.3.6 Scanning Electron Microscopy [Seite 310]
17.3.7 - 11.3.7 FTIR Analysis [Seite 311]
17.4 - 11.4 Conclusion [Seite 313]
17.5 - References [Seite 313]
18 - 12 Lignocellulosic Fibers Composites: An Overview [Seite 317]
18.1 - 12.1 Wood [Seite 317]
18.2 - 12.2 Conventional Wood-Based Composites [Seite 320]
18.3 - 12.3 Lignocellulosic Composites with Reduced Weight [Seite 323]
18.4 - 12.4 Regenerated Cellulose Fibers [Seite 325]
18.5 - 12.5 Composites with Natural Fibres [Seite 327]
18.6 - 12.6 Sisal [Seite 327]
18.7 - 12.7 Banana Fibers [Seite 328]
18.8 - 12.8 Lignin and Cellulose [Seite 329]
18.9 - 12.9 Nanocellulose [Seite 330]
18.10 - References [Seite 330]
19 - 13 Biodiesel-Derived Raw Glycerol to Value-Added Products: Catalytic Conversion Approach [Seite 333]
19.1 - 13.1 Introduction [Seite 333]
19.2 - 13.2 Glycerol [Seite 337]
19.2.1 - 13.2.1 Production of Glycerol [Seite 337]
19.2.2 - 13.2.2 Applications of Glycerol [Seite 340]
19.3 - 13.3 Catalytic Conversion of Glycerol to Value-added Products [Seite 340]
19.3.1 - 13.3.1 Catalytic Oxidation of Glycerol [Seite 342]
19.3.2 - 13.3.2 Catalytic Dehydration of Glycerol [Seite 348]
19.3.3 - 13.3.3 Catalytic Acetylation of Glycerol [Seite 352]
19.3.4 - 13.3.4 Catalytic Esterification of Glycerol [Seite 354]
19.3.5 - 13.3.5 Catalytic Reforming of Glycerol [Seite 357]
19.3.6 - 13.3.6 Catalytic Reduction of Glycerol [Seite 361]
19.3.7 - 13.3.7 Catalytic Etherification of Glycerol [Seite 363]
19.3.8 - 13.3.8 Catalytic Ammoxidation of Glycerol [Seite 365]
19.3.9 - 13.3.9 Catalytic Acetalization of Glycerol [Seite 366]
19.3.10 - 13.3.10 Enzymatic Conversion of Glycerol [Seite 368]
19.4 - 13.4 Conclusion [Seite 369]
19.5 - References [Seite 370]
20 - 14 Thermo-Mechanical Characterization of Sustainable Structural Composites [Seite 391]
20.1 - 14.1 Introduction [Seite 391]
20.2 - 14.2 Structure and Mechanical Properties of Botanical Fibers [Seite 392]
20.2.1 - 14.2.1 Structure, Morphology and Composition of Natural Fibers [Seite 393]
20.2.1.1 - 14.2.1.1 Structure and Morphology [Seite 393]
20.2.1.2 - 14.2.1.2 Chemical Constituents [Seite 394]
20.2.2 - 14.2.2 Physico-Mechanical Properties [Seite 394]
20.3 - 14.3 Sustainable Polymer Matrix [Seite 396]
20.3.1 - 14.3.1 Thermoplastic Biopolymers [Seite 396]
20.3.2 - 14.3.2 Synthesis, Morphology, Physical and Mechanical Properties of Poly-l-lactide [Seite 397]
20.3.2.1 - 14.3.2.1 Synthesis [Seite 397]
20.3.2.2 - 14.3.2.2 Morphology [Seite 398]
20.3.2.3 - 14.3.2.3 Physical and Mechanical Properties [Seite 399]
20.3.3 - 14.3.3 Biodegradation and Environmental Impact [Seite 400]
20.4 - 14.4 Interface in Natural Fiber-Sustainable Polymer Microcomposites [Seite 401]
20.4.1 - 14.4.1 Enhancement of Natural Fiber Adhesion to Polymer Matrix [Seite 401]
20.4.1.1 - 14.4.1.1 General Considerations and Fiber Treatment [Seite 401]
20.4.1.2 - 14.4.1.2 Mimicking Supramolecular Cell Wall Structures with Advanced Polymerization Methods [Seite 402]
20.4.2 - 14.4.2 Matrix Morphology Development in the Presence of Long-Fiber Reinforcement [Seite 403]
20.5 - 14.5 Natural Fibers as a Reinforcement in Unidirectional and Laminar Composites [Seite 405]
20.5.1 - 14.5.1 Theory of Fiber Reinforcement [Seite 406]
20.5.2 - 14.5.2 Manufacturing High-Fiber-Volume Fraction Composites [Seite 407]
20.6 - 14.6 Sustainable Structural Composites [Seite 408]
20.6.1 - 14.6.1 Selection of a Low Microfibril Angle Natural Fiber and a Sustainable Polymer Matrix [Seite 410]
20.6.1.1 - 14.6.1.1 Fiber Selection [Seite 410]
20.6.1.2 - 14.6.1.2 Polymer Matrix Selection [Seite 410]
20.6.2 - 14.6.2 Enhancing Mechanical Strength of Fibers with Chemical Treatment [Seite 411]
20.6.2.1 - 14.6.2.1 Modeling Statistical Variation of Single Fiber Bundle Failure [Seite 411]
20.6.2.2 - 14.6.2.2 Effect of Caustic Soda Treatment on Sisal Fiber Bundle Tensile Strength [Seite 414]
20.6.3 - 14.6.3 Adhesion Optimization and Polymer Morphology Development at Fiber-to-Matrix Interface [Seite 417]
20.6.3.1 - 14.6.3.1 Observation of Crystalline Morphology at Fiber-to-Matrix Interface [Seite 417]
20.6.3.2 - 14.6.3.2 Microbond Pullout Shear Test [Seite 421]
20.6.4 - 14.6.4 Processing and Thermo-Mechanical Characterization of Unidirectional Long-fiber-bundle Composites [Seite 422]
20.6.4.1 - 14.6.4.1 Compression Molding of Long-fiber-bundle Thermoplastic Composites [Seite 422]
20.6.4.2 - 14.6.4.2 Mechanical Properties of Long-fiber-bundle Composites [Seite 422]
20.6.4.3 - 14.6.4.3 Dynamic Mechanical Thermal Analysis of Long-fiber-bundle Composites [Seite 424]
20.7 - 14.7 Discussion and Conclusions [Seite 425]
20.8 - Acknowledgment [Seite 426]
20.9 - References [Seite 426]
21 - 15 Novel pH Sensitive Composite Hydrogel Based on Functionalized Starch/clay for the Controlled Release of Amoxicillin [Seite 433]
21.1 - 15.1 Introduction [Seite 433]
21.2 - 15.2 Experimental [Seite 436]
21.2.1 - 15.2.1 Materials [Seite 436]
21.2.2 - 15.2.2 Preparation of Composites of Cross-linked Carboxymethyl Starch and Montmorillonite (CL-CMS/MMT) [Seite 436]
21.2.2.1 - 15.2.2.1 Preparation of Carboxymethyl Starch (CMS) [Seite 436]
21.2.2.2 - 15.2.2.2 Preparation of Cross-linked Carboxymethyl Starch (CL-CMS) [Seite 437]
21.2.2.3 - 15.2.2.3 Preparation of Sodium Montmorillonite (Na-MMT) [Seite 437]
21.2.2.4 - 15.2.2.4 Preparation of Cross-linked CMS/MMT Hydrogel (CL-CMS/MMT) [Seite 437]
21.2.3 - 15.2.3 Characterization of the Drug Carrier [Seite 437]
21.2.4 - 15.2.4 Physio-Chemical Evaluation of CL-CMS [Seite 438]
21.2.5 - 15.2.5 Drug Encapsulation Experiments [Seite 438]
21.2.6 - 15.2.6 Swelling Studies [Seite 439]
21.2.7 - 15.2.7 In Vitro Drug Release [Seite 439]
21.2.8 - 15.2.8 Antimicrobial Activity [Seite 439]
21.3 - 15.3 Results and Discussion [Seite 440]
21.3.1 - 15.3.1 Characterization of CL-CMS/MMT Hydrogel [Seite 440]
21.3.2 - 15.3.2 Physico-Chemical Evaluation of Cross-linked Carboxymethyl Starch (CL-CMS) [Seite 441]
21.3.3 - 15.3.3 Effect of MMT Content on the Swelling Ratios of CL-CMS/MMT Composites [Seite 442]
21.3.4 - 15.3.4 Swelling Studies [Seite 443]
21.3.5 - 15.3.5 In Vitro Release Studies [Seite 443]
21.3.6 - 15.3.6 Release Mechanism Studies [Seite 444]
21.3.7 - 15.3.7 Antibacterial Studies [Seite 445]
21.4 - 15.4 Conclusions [Seite 445]
21.5 - Acknowledgments [Seite 446]
21.6 - References [Seite 446]
22 - 16 Preparation and Characterization of Biobased Thermoset Polymers from Renewable Resources and Their Use in Composites [Seite 449]
22.1 - 16.1 Introduction [Seite 449]
22.2 - 16.2 Characterization [Seite 451]
22.2.1 - 16.2.1 Physicochemical Characterization [Seite 451]
22.2.1.1 - 16.2.1.1 Chemical Composition [Seite 451]
22.2.1.2 - 16.2.1.2 Density and Morphology [Seite 454]
22.2.1.3 - 16.2.1.3 Viscosity [Seite 455]
22.2.1.4 - 16.2.1.4 Molecular Weight [Seite 457]
22.2.1.5 - 16.2.1.5 Melting Temperature [Seite 457]
22.2.1.6 - 16.2.1.6 Crystallinity and Morphology [Seite 458]
22.2.1.7 - 16.2.1.7 Wettability and Surface Tension [Seite 460]
22.2.1.8 - 16.2.1.8 Water Binding Capacity and Swelling [Seite 461]
22.2.1.9 - 16.2.1.9 Thermal Conductivity [Seite 462]
22.2.1.10 - 16.2.1.10 Thermal Stability [Seite 463]
22.2.1.11 - 16.2.1.11 Flammability [Seite 465]
22.2.2 - 16.2.2 Mechanical Characterization [Seite 466]
22.2.2.1 - 16.2.2.1 Tensile Properties [Seite 466]
22.2.2.2 - 16.2.2.2 Flexural Properties [Seite 468]
22.2.2.3 - 16.2.2.3 Impact Properties [Seite 468]
22.2.2.4 - 16.2.2.4 Compressive Properties [Seite 471]
22.2.2.5 - 16.2.2.5 Dynamic Mechanical Thermal Analysis [Seite 472]
22.2.2.6 - 16.2.2.6 Toughness and Hardness [Seite 473]
22.2.2.7 - 16.2.2.7 Creep and Fatigue [Seite 474]
22.2.2.8 - 16.2.2.8 Brittleness and Ductility [Seite 475]
22.3 - References [Seite 476]
23 - 17 Influence of Natural Fillers Size and Shape into Mechanical and Barrier Properties of Biocomposites [Seite 483]
23.1 - 17.1 Introduction [Seite 483]
23.2 - 17.2 Mechanical Properties of Biobased Composites [Seite 488]
23.2.1 - 17.2.1 Relevant Parameters in Fillers Reinforcement [Seite 490]
23.2.2 - 17.2.2 Stress Transfer and Percolation Mechanisms [Seite 491]
23.2.3 - 17.2.3 Common Fillers Coming from Natural Sources [Seite 494]
23.2.3.1 - 17.2.3.1 Microfillers [Seite 494]
23.2.3.2 - 17.2.3.2 Nanofillers [Seite 495]
23.2.4 - 17.2.4 Shape and Size of Natural Fillers [Seite 496]
23.2.5 - 17.2.5 Impact of Fillers Size and Volume Fraction [Seite 499]
23.2.5.1 - 17.2.5.1 Filler Size [Seite 499]
23.2.5.2 - 17.2.5.2 Filler Amount [Seite 501]
23.2.6 - 17.2.6 Processing [Seite 502]
23.2.6.1 - 17.2.6.1 Casting Evaporation [Seite 502]
23.2.6.2 - 17.2.6.2 Hot Processing [Seite 503]
23.3 - References [Seite 504]
24 - 18 Composite of Biodegradable Polymer Blends of PCL/PLLA and Coconut Fiber: The Effects of Ionizing Radiation [Seite 513]
24.1 - 18.1 Introduction [Seite 513]
24.2 - 18.2 Material and Method [Seite 518]
24.2.1 - 18.2.1 Coconut Fiber [Seite 518]
24.2.2 - 18.2.2 Preparation of Blend Sheets [Seite 519]
24.2.3 - 18.2.3 Preparation of Composite Pellets and Sheets [Seite 520]
24.2.4 - 18.2.4 Radiation Processing [Seite 520]
24.2.4.1 - 18.2.4.1 Electron Beam Irradiation [Seite 520]
24.2.4.2 - 18.2.4.2 Gamma Irradiation [Seite 522]
24.2.5 - 18.2.5 Samples Characterization [Seite 522]
24.2.5.1 - 18.2.5.1 Mechanical Test [Seite 522]
24.2.5.2 - 18.2.5.2 Scanning Electron Microscopy [Seite 522]
24.2.5.3 - 18.2.5.3 Force Modulation Microscopy [Seite 523]
24.2.6 - 18.2.6 Biodegradability [Seite 524]
24.2.6.1 - 18.2.6.1 Enzymatic Degradation [Seite 524]
24.2.6.2 - 18.2.6.2 Biodegradability in Compost Soil [Seite 524]
24.2.7 - 18.2.7 Cytotoxicity Test [Seite 524]
24.2.7.1 - 18.2.7.1 Cell Culture [Seite 524]
24.2.7.2 - 18.2.7.2 Extract Preparation [Seite 524]
24.2.8 - 18.2.8 Bioburden Test [Seite 525]
24.2.9 - 18.2.9 Sterility Test [Seite 526]
24.3 - 18.3 Results and Discussion [Seite 526]
24.3.1 - 18.3.1 Mechanical Properties [Seite 526]
24.3.2 - 18.3.2 Scanning Electron Microscopy [Seite 528]
24.3.3 - 18.3.3 Atomic Force Microscopy and Force Modulation Microscopy [Seite 532]
24.3.4 - 18.3.4 Cytoxicity [Seite 535]
24.3.5 - 18.3.5 Bioburden [Seite 536]
24.3.6 - 18.3.6 Sterility Test [Seite 539]
24.3.7 - 18.3.7 Enzymatic Degradation [Seite 540]
24.3.8 - 18.3.8 Biodegradation in Simulated Compost Soil [Seite 542]
24.4 - 18.4 Conclusion [Seite 543]
24.5 - Acknowledgments [Seite 544]
24.6 - References [Seite 545]
25 - 19 Packaging Composite Materials from Renewable Resources [Seite 549]
25.1 - 19.1 Introduction [Seite 549]
25.2 - 19.2 Sustainable Packaging [Seite 551]
25.3 - 19.3 Packaging Materials/Composites [Seite 555]
25.4 - 19.4 Biomass Packaging Materials/Biobased Polymers [Seite 556]
25.4.1 - 19.4.1 Cellulose/Cellulose Derives/Cellulose Blends [Seite 556]
25.4.2 - 19.4.2 Chitosan/Chitosan Derives/Chitosan Blends [Seite 557]
25.4.3 - 19.4.3 Gelatin/Gelatin Derives/Gelatin Blends [Seite 559]
25.4.4 - 19.4.4 Starch/Starch Derives/Starch Blends [Seite 559]
25.4.5 - 19.4.5 Fruit Purees [Seite 561]
25.5 - 19.5 Vegetable Oils/Essential Oils [Seite 562]
25.6 - 19.6 Aliphatic Polyesters [Seite 562]
25.6.1 - 19.6.1 Polylactide Acids (PLAs)/PLA Blends [Seite 563]
25.6.2 - 19.6.2 Poly(hydroxyalkanoates)/PHAs Blends [Seite 565]
25.6.3 - 19.6.3 Polycaprolactone [Seite 566]
25.6.4 - 19.6.4 Polyesteramide [Seite 566]
25.6.5 - 19.6.5 Polyurethane/PU Blends [Seite 566]
25.7 - 19.7 Synthetic/Natural Polymers Reinforcement with Any Other Renewable Resources/Vegetables Fibers Blends [Seite 568]
25.8 - 19.8 Edible Packaging Materials (Composites) [Seite 569]
25.9 - 19.9 Processing Methods or Tools for Biopackaging Composites Productions [Seite 570]
25.9.1 - 19.9.1 Hot Press Molding and Foaming: Melt-processed Blends [Seite 570]
25.9.2 - 19.9.2 Casting Method [Seite 570]
25.9.3 - 19.9.3 Aqueous Blends [Seite 571]
25.9.4 - 19.9.4 Extrusion [Seite 571]
25.9.5 - 19.9.5 Injection Molding [Seite 571]
25.9.6 - 19.9.6 Co-extrusion [Seite 572]
25.9.7 - 19.9.7 Ultrasonic [Seite 572]
25.10 - 19.10 Nanopackaging (Bionanocomposites) [Seite 573]
25.11 - 19.11 Preparation Methods for Packaging Nanocomposites [Seite 574]
25.12 - 19.12 Edible Nanocomposite-based Material [Seite 576]
25.13 - 19.13 Summary/Conclusion [Seite 576]
25.14 - Abbreviations [Seite 577]
25.15 - References [Seite 578]
26 - 20 Physicochemical Properties of Ash-Based Geopolymer Concrete [Seite 587]
26.1 - 20.1 Precursor of Geopolymerization [Seite 587]
26.2 - 20.2 Back Ground of Precursor [Seite 588]
26.3 - 20.3 Present Scenario of Geopolymer [Seite 588]
26.4 - 20.4 Geopolymer Concrete [Seite 589]
26.5 - 20.5 Constituents of Geopolymers [Seite 590]
26.6 - 20.6 Evolution of Geopolymer [Seite 590]
26.7 - 20.7 Works on Geopolymer Concrete [Seite 591]
26.7.1 - 20.7.1 Fresh and Hardened Concrete [Seite 591]
26.7.2 - 20.7.2 Durability of Geopolymer Concrete [Seite 592]
26.7.2.1 - 20.7.2.1 Acid Attack [Seite 592]
26.7.2.2 - 20.7.2.2 Sulfate Attack [Seite 592]
26.7.2.3 - 20.7.2.3 Water Absorption [Seite 593]
26.7.3 - 20.7.3 Bond Strength of Geopolymer Concrete [Seite 594]
26.7.4 - 20.7.4 Thermal Properties of Geopolymer Concrete [Seite 595]
26.7.5 - 20.7.5 Compressive Strength Test on Geopolymer Mortar Cubes [Seite 596]
26.7.5.1 - 20.7.5.1 Mortar Cube [Seite 596]
26.7.5.2 - 20.7.5.2 The Compressive Strength of Geopolymer Concrete Cubes [Seite 596]
26.7.6 - 20.7.6 Split Tensile Strength [Seite 596]
26.7.7 - 20.7.7 Reinforced Geopolymer Concrete Columns [Seite 597]
26.8 - 20.8 Economic Benefits of Geopolymer Concrete [Seite 598]
26.9 - 20.9 Authors Study [Seite 598]
26.10 - 20.10 Conclusion [Seite 601]
26.11 - References [Seite 602]
27 - 21 A Biopolymer Derived from Castor Oil Polyurethane: Experimental and Numerical Analyses [Seite 605]
27.1 - 21.1 Introduction [Seite 605]
27.1.1 - 21.1.1 Polymer Mechanical Behavior: Experiments and Constitutive Models [Seite 607]
27.2 - 21.2 Experimental Analyses [Seite 610]
27.2.1 - 21.2.1 Materials and Manufacturing Process [Seite 610]
27.2.2 - 21.2.2 Mechanical Test Methods [Seite 610]
27.3 - 21.3 Constitutive Models [Seite 614]
27.4 - 21.4 Results [Seite 615]
27.4.1 - 21.4.1 Experimental Tensile Tests Results [Seite 615]
27.4.2 - 21.4.2 Experimental Compression Tests Results [Seite 616]
27.4.3 - 21.4.3 Experimental Bending Tests Results [Seite 619]
27.4.4 - 21.4.4 Experimental DMTA Results [Seite 621]
27.4.5 - 21.4.5 Constitutive Models Results [Seite 622]
27.5 - 21.5 Conclusions [Seite 626]
27.6 - Acknowledgment [Seite 628]
27.7 - References [Seite 628]
28 - 22 Natural Polymer-Based Biomaterials and its Properties [Seite 631]
28.1 - 22.1 Introduction [Seite 632]
28.2 - 22.2 Modifications of PLA [Seite 636]
28.3 - 22.3 PLA Applications [Seite 636]
28.4 - 22.4 Characterization by FT-IR [Seite 638]
28.5 - 22.5 Characterization by Optical Microscopy [Seite 639]
28.6 - 22.6 Characterization by Electron Microscopy [Seite 640]
28.7 - 22.7 Characterization by Mechanical Testing [Seite 642]
28.8 - 22.8 Characterization of GPC [Seite 648]
28.9 - 22.9 Characterization of Dynamic Mechanical Thermal Analysis [Seite 649]
28.10 - References [Seite 650]
29 - 23 Physical and Mechanical Properties of Polymer Membranes from Renewable Resources [Seite 655]
29.1 - 23.1 Introduction [Seite 655]
29.2 - 23.2 Membranes Classifications [Seite 657]
29.2.1 - 23.2.1 Typical Membrane Technique Preparation [Seite 657]
29.2.1.1 - 23.2.1.1 Particulate Leaching/Solvent Casting [Seite 658]
29.2.1.2 - 23.2.1.2 Gas Foaming [Seite 658]
29.2.1.3 - 23.2.1.3 Freeze Drying [Seite 658]
29.2.1.4 - 23.2.1.4 Electrospinning [Seite 658]
29.2.1.5 - 23.2.1.5 Phase Inversion [Seite 659]
29.2.2 - 23.2.2 Membrane Modification [Seite 659]
29.2.2.1 - 23.2.2.1 Blending [Seite 660]
29.2.2.2 - 23.2.2.2 Curing [Seite 660]
29.2.2.3 - 23.2.2.3 Grafting [Seite 661]
29.3 - 23.3 Overview of Fabrication Method of Polymer Membranes from Renewable Resources [Seite 661]
29.3.1 - 23.3.1 BP/PEG (Blends)-1 Ply Fabrication [Seite 661]
29.3.1.1 - 23.3.1.1 Renewable Polymer (BP) Preparation [Seite 661]
29.3.1.2 - 23.3.1.2 Poly(ethylene glycol) Preparation [Seite 661]
29.3.1.3 - 23.3.1.3 BP/PEG (Curing): 2 Plies Fabrication [Seite 661]
29.3.1.4 - 23.3.1.4 BP/PEG (grafting)-1 Ply Fabrication [Seite 662]
29.3.1.5 - 23.3.1.5 BP/DMF Fabrication [Seite 662]
29.4 - 23.4 Chemical Reaction of Renewable Polymer (BP) [Seite 664]
29.4.1 - 23.4.1 Functional Group Determination by Means of Infrared Spectroscopic (FTIR) for BP, PEG, and BP/PEG (Blends)-1 Ply, BP/PEG (curing)-2 Plies, and BP/PEG (grafting)-1 Ply [Seite 666]
29.4.1.1 - 23.4.1.1 BP/PEG (Blends)-1 Ply [Seite 667]
29.4.1.2 - 23.4.1.2 BP/PEG (Curing)-2 Plies [Seite 667]
29.4.1.3 - 23.4.1.3 BP/PEG (Grafting)-1 Ply [Seite 668]
29.4.2 - 23.4.2 BP/DMF [Seite 668]
29.5 - 23.5 Morphological Changes of Polymer Membrane by Scanning Electron Microscope [Seite 669]
29.6 - 23.6 Water Permeability [Seite 672]
29.7 - 23.7 Conclusions [Seite 673]
29.8 - References [Seite 674]
30 - Index [Seite 677]
31 - EULA [Seite 691]

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

220,99 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen