GPU-based Parallel Implementation of Swarm Intelligence Algorithms

 
 
Morgan Kaufmann (Verlag)
  • 1. Auflage
  • |
  • erschienen am 15. April 2016
  • |
  • 256 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-809364-1 (ISBN)
 

GPU-based Parallel Implementation of Swarm Intelligence Algorithms combines and covers two emerging areas attracting increased attention and applications: graphics processing units (GPUs) for general-purpose computing (GPGPU) and swarm intelligence. This book not only presents GPGPU in adequate detail, but also includes guidance on the appropriate implementation of swarm intelligence algorithms on the GPU platform.

GPU-based implementations of several typical swarm intelligence algorithms such as PSO, FWA, GA, DE, and ACO are presented and having described the implementation details including parallel models, implementation considerations as well as performance metrics are discussed. Finally, several typical applications of GPU-based swarm intelligence algorithms are presented. This valuable reference book provides a unique perspective not possible by studying either GPGPU or swarm intelligence alone.

This book gives a complete and whole picture for interested readers and new comers who will find many implementation algorithms in the book suitable for immediate use in their projects. Additionally, some algorithms can also be used as a starting point for further research.


  • Presents a concise but sufficient introduction to general-purpose GPU computing which can help the layman become familiar with this emerging computing technique
  • Describes implementation details, such as parallel models and performance metrics, so readers can easily utilize the techniques to accelerate their algorithmic programs
  • Appeals to readers from the domain of high performance computing (HPC) who will find the relatively young research domain of swarm intelligence very interesting
  • Includes many real-world applications, which can be of great help in deciding whether or not swarm intelligence algorithms or GPGPU is appropriate for the task at hand


Ying Tan is a professor and PhD advisor at the School of Electronics Engineering and Computer Science of Peking University, and director of Computational Intelligence Laboratory at Peking University (PKU). He received his BEng from the EEI, MSc from Xidian Univ., and PhD from Southeast Univ., in 1985, 1988, and 1997, respectively. From 1997, he was a postdoctoral fellow then an associate professor at University of Science and Technology of China (USTC), then served as director of Institute of Intelligent Information Science and a full professor since 2000. He worked with the Chinese University of Hong Kong (CUHK) in 1999 and 2004-2005. He was elected for the 100 talent program of the Chinese Academy of Science (CAS) in 2005
  • Englisch
  • San Francisco
  • |
  • USA
Elsevier Science
  • 45,12 MB
978-0-12-809364-1 (9780128093641)
0128093641 (0128093641)
weitere Ausgaben werden ermittelt
  • Front Cover
  • GPU-based Parallel Implementation of Swarm Intelligence Algorithms
  • Copyright
  • Dedication
  • Contents
  • Preface
  • Acknowledgments
  • Acronyms
  • Chapter 1: Introduction
  • 1.1 Swarm Intelligence Algorithms (SIAs)
  • 1.2 Graphics Processing Units (GPUs)
  • 1.3 SIAs and GPUs
  • 1.4 Some Perspectives
  • 1.5 Organization
  • Chapter 2: GPGPU: General-Purpose Computing on the GPU
  • 2.1 Introduction
  • 2.2 GPGPU Development Platforms
  • 2.3 Compute Unified Device Architecture (CUDA)
  • 2.4 Open Computing Language (OpenCL)
  • 2.5 Programming Techniques
  • 2.6 Some Discussions
  • 2.7 Summary
  • Chapter 3: Parallel Models
  • 3.1 Previous Work
  • 3.2 Basic Guide for Parallel Programming
  • 3.3 GPU-Oriented Parallel Models
  • 3.4 Na?ve Parallel Model
  • 3.5 Multi-Kernel Parallel Model
  • 3.6 All-GPU Parallel Model
  • 3.7 Island Parallel Model
  • 3.8 Summary
  • Chapter 4: Performance Metrics
  • 4.1 Parallel Performance Metrics
  • 4.2 Algorithm Performance Metrics
  • 4.3 Rectified Efficiency
  • 4.4 Case Study
  • 4.5 Summary
  • Chapter 5: Implementation Considerations
  • 5.1 Float-Point
  • 5.2 Memory Accesses
  • 5.3 Random Number Generation
  • 5.4 Branch Divergence
  • 5.5 Occupancy
  • 5.6 Summary
  • Chapter 6: GPU-Based Particle Swarm Optimization
  • 6.1 Introduction
  • 6.2 Particle Swarm Optimization
  • 6.3 GPU-Based PSO for Single-Objective Optimization
  • 6.4 GPU-Based PSO for Multiple-Objective Optimization
  • 6.5 Remarks
  • 6.6 Summary
  • Chapter 7: GPU-Based Fireworks Algorithm
  • 7.1 Introduction
  • 7.2 Fireworks Algorithms (FWA)
  • 7.3 GPU-Based Fireworks Algorithm
  • 7.4 Summary
  • Chapter 8: Attract-Repulse Fireworks Algorithm Using Dynamic Parallelism
  • 8.1 Introduction
  • 8.2 Attract-Repulse Fireworks Algorithm (AR-FWA)
  • 8.3 Implementation
  • 8.4 Experiments and Analysis
  • 8.5 Summary
  • Chapter 9: Other Typical Swarm Intelligence Algorithms Based on GPUs
  • 9.1 GPU-Based Genetic Algorithm
  • 9.2 GPU-Based Differential Evolution
  • 9.3 GPU-Based Ant Colony Optimization
  • 9.4 Summary
  • Chapter 10: GPU-Based Random Number Generators
  • 10.1 Introduction
  • 10.2 Uniform Random Number Generators
  • 10.3 Random Numbers With Nonuniform Distributions
  • 10.4 Measurements of Randomness
  • 10.5 Impact of Random Numbers on Performance of SIAs
  • 10.6 Summary
  • Chapter 11: Applications
  • 11.1 Image Processing
  • 11.2 Computer Vision
  • 11.3 Machine Learning
  • 11.4 Parameter Optimization
  • 11.5 Miscellaneous
  • 11.6 Case Study: CUDA-Based PSO for Road Sign Detection
  • 11.7 Summary
  • Chapter 12: A CUDA-Based Test Suit
  • 12.1 Overview
  • 12.2 Speedup and Baseline Results
  • 12.3 Unimodal Functions
  • 12.4 Basic Multimodal Functions
  • 12.5 Hybrid Functions
  • 12.6 Composition Functions
  • 12.7 Summary
  • Appendix: Figures for 2D Functions
  • Appendix A: Figures and Tables
  • List of Figures
  • List of Tables
  • Appendix B: Resources
  • B.1 Internet Resources
  • B.2 Organizations
  • B.3 Journals
  • B.4 Conferences
  • Appendix C: Table of Symbols
  • References
  • Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

85,62 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok