Mobile Communications Systems Development

A Practical Introduction to System Understanding, Implementation and Deployment
 
 
Standards Information Network (Verlag)
  • 1. Auflage
  • |
  • erschienen am 20. April 2021
  • |
  • 544 Seiten
 
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-1-119-77869-1 (ISBN)
 
Provides a thorough introduction to the development, operation, maintenance, and troubleshooting of mobile communications systems

Mobile Communications Systems Development: A Practical Introduction for System Understanding, Implementation, and Deployment is a comprehensive "how to" manual for mobile communications system design, deployment, and support. Providing a detailed overview of end-to-end system development, the book encompasses operation, maintenance, and troubleshooting of currently available mobile communication technologies and systems. Readers are introduced to different network architectures, standardization, protocols, and functions including 2G, 3G, 4G, and 5G networks, and the 3GPP standard.

In-depth chapters cover the entire protocol stack from the Physical (PHY) to the Application layer, discuss theoretical and practical considerations, and describe software implementation based on the 3GPP standardized technical specifications. The book includes figures, tables, and sample computer code to help readers thoroughly comprehend the functions and underlying concepts of a mobile communications network. Each chapter includes an introduction to the topic and a chapter summary. A full list of references, and a set of exercises are also provided at the end of the book to test comprehension and strengthen understanding of the material. Written by a respected professional with more than 20 years' experience in the field, this highly practical guide:
* Provides detailed introductory information on GSM, GPRS, UMTS, and LTE mobile communications systems and networks
* Describes the various aspects and areas of the LTE system air interface and its protocol layers
* Covers troubleshooting and resolution of mobile communications systems and networks issues
* Discusses the software and hardware platforms used for the development of mobile communications systems network elements
* Includes 5G use cases, enablers, and architectures that cover the 5G NR (New Radio) and 5G Core Network

Mobile Communications Systems Development is perfect for graduate and postdoctoral students studying mobile communications and telecom design, electronic engineering undergraduate students in their final year, research and development engineers, and network operation and maintenance personnel.
weitere Ausgaben werden ermittelt
Rajib Taid is currently Deputy General Manager (Information Technology) for BCPL, India. He has over 20 years of experience working with and in government agencies and private corporations. His competencies range from mobile communications software research and development to managing multiple technology domains and platforms.
  • Cover
  • Title Page
  • Copyright Page
  • Contents
  • About the Author
  • Preface
  • Acknowledgments
  • List of Abbreviations
  • Chapter 1 Introduction: Career Opportunities in Mobile Communications Networks Space
  • Part I Network Architectures, Standardization, Protocols, and Functions
  • Chapter 2 Network Architectures, Standardizations Process
  • Introduction
  • 2.1 Network Elements and Basic Networks Architectures
  • 2.1.1 GSM (2G) Network Architecture
  • 2.1.2 General Packet Radio Service (GPRS-2.5G) Network Architecture
  • 2.1.3 Universal Mobile Telecommunications System (3G) Network Architecture
  • 2.1.4 LTE (4G) Network Architecture
  • 2.1.5 GSM, UMTS, LTE, and 5G Network Elements: A Comparison
  • 2.1.6 Circuit Switched (CS) vs Packet Switched (PS)
  • 2.2 Mobile Communication Network Domains
  • 2.2.1 AN Domain
  • 2.2.2 Core Network (CN) Domain
  • 2.2.3 Network Domains and Its Elements
  • 2.2.4 Example: End-to-End Mobile Network Information Flow
  • 2.2.5 Example: GSM MO Call
  • 2.3 Mobile Communications Systems Evolutions
  • 2.3.1 Evolutions of Air Interface
  • 2.3.2 Evolutions of 3GPP Networks Architectures
  • 2.4 Mobile Communications Network System Engineering
  • 2.4.1 Mobility Management
  • 2.4.2 Air Interface Management
  • 2.4.3 Subscribers and Services Management
  • 2.4.4 Security Management
  • 2.4.5 Network Maintenance
  • 2.5 Standardizations of Mobile Communications Networks
  • 2.5.1 3rd Generation Partnership Project (3GPP)
  • 2.5.2 3GPP Working Groups
  • 2.5.3 3GPP Technical Specification and Technical Report
  • 2.5.4 Stages of a 3GPP Technical Specification
  • 2.5.5 Release Number of 3GPP Technical Specification
  • 2.5.6 3GPP Technical Specification Numbering Nomenclature
  • 2.5.7 Vocabulary of 3GPP Specifications
  • 2.5.8 Examples in a 3GPP Technical Specification
  • 2.5.9 Standardization of Technical Specifications by 3GPP
  • 2.5.10 Scope of 3GPP Technical Specification (TS)
  • 2.5.11 3GPP TS for General Description of a Protocol Layer
  • 2.5.12 3GPP TS Drafting Rules: Deriving Requirements
  • 2.5.13 Download 3GPP Technical Specifications
  • 2.5.14 3GPP Change Requests
  • 2.5.15 Learnings from 3GPP Meetings TDocs
  • 2.6 3GPP Releases and Its Features
  • Chapter Summary
  • Chapter 3 Protocols, Interfaces, and Architectures
  • Introduction
  • 3.1 Protocol Interface and Its Stack
  • 3.1.1 Physical Interface
  • 3.1.2 Logical Interface
  • 3.1.3 Logical Interfaces' Names and Their Protocol Stack
  • 3.1.4 Examples of Logical Interface and Its Protocol Layers
  • 3.2 Classifications of Protocol Layers
  • 3.2.1 Control Plane or Signaling Protocols
  • 3.2.2 User Plane Protocols
  • 3.3 Grouping of UMTS, LTE, and 5G Air Interface Protocol Layers
  • 3.3.1 Access Stratum (AS): UMTS UE - UTRAN
  • LTE UE - E-UTRAN
  • 5G UE - NG-RAN
  • 3.3.2 Non-Access Stratum: UMTS UE - CN, LTE UE - EPC
  • 5G UE-Core
  • 3.4 Initialization of a Logical Interface
  • 3.5 Protocol Layer Termination
  • 3.6 Protocol Sublayers
  • 3.7 Protocol Conversion
  • 3.8 Working Model of a 3GPP Protocol Layer: Services and Functions
  • 3.9 General Protocol Model Between RAN and CN (UMTS, LTE, 5G)
  • 3.10 Multiple Transport Networks, Protocols, and Physical Layer Interfaces
  • 3.11 How to Identify and Understand Protocol Architectures
  • 3.11.1 Identifying a Logical Interface, Protocol Stack, and Its Layers
  • 3.11.2 Identification of Technical Requirements Using Interface Name
  • 3.12 Protocol Layer Procedures over CN Interfaces
  • 3.12.1 Similar Functions and Procedures over the CN Interfaces
  • 3.12.2 Specific Functions and Procedures over the CN Interfaces
  • Chapter Summary
  • Chapter 4 Encoding and Decoding of Messages
  • Introduction
  • 4.1 Description and Encoding/Decoding of Air Interface Messages
  • 4.1.1 Encoding/Decoding: Air Interface Layer 3 Messages
  • 4.1.2 Encoding/Decoding: LTE and 5G NR Layer 2: RLC Protocol
  • 4.1.3 Encoding/Decoding: LTE and 5G NR Layer 2: MAC Protocol
  • 4.1.4 CSN.1 Encoding/Decoding: GPRS Layer 2 Protocol (RLC/MAC)
  • 4.1.5 ASN.1 Encoding/Decoding: UMTS, LTE, and 5G NR Layer 3 Protocol
  • 4.1.6 Direct/Indirect Encoding Method
  • 4.1.7 Segmented Messages over the Air Interface
  • 4.1.8 Piggybacking a Signaling Message
  • 4.2 Encoding/Decoding of Signaling Messages: RAN and CN
  • Chapter Summary
  • Chapter 5 Network Elements: Identities and Its Addressing
  • Introduction
  • 5.1 Network Elements and Their Identities
  • 5.2 Permanent Identities
  • 5.3 Temporary Identities Assigned by CN
  • 5.3.1 GSM System Temporary Identities
  • 5.3.2 GPRS System Temporary Identities
  • 5.3.3 LTE/EPS System Temporary Identities
  • 5.4 Temporary Identities Assigned by RAN: RNTI
  • 5.5 Usages of Network Identities
  • 5.6 Native and Mapped Network Identities
  • 5.7 LTE UE Application Protocol Identity
  • Chapter Summary
  • Chapter 6 Interworking and Interoperations of Mobile Communications Networks
  • Introduction
  • 6.1 Requirements and Types of Interworking
  • 6.2 Interworking Through Enhanced Network Elements
  • 6.2.1 Interworking for Voice Call Through IMS: VoLTE
  • 6.2.1.1 IP Multimedia Subsystem (IMS)
  • 6.2.1.2 UE Registration and Authentication
  • 6.2.2 Interworking for VoLTE Call Through LTE/EPS: SRVCC
  • 6.2.3 Interworking for Voice Call Through LTE/EPS: CSFB
  • 6.3 Interworking Through Legacy Network Elements
  • 6.4 Interworking Between LTE/EPS and 5G Systems
  • 6.5 Interoperations of Networks: LTE/EPS Roaming
  • 6.5.1 Roaming Through Interoperations of Enhanced Networks Elements
  • 6.5.2 Roaming Through Interoperations of Legacy Networks Elements
  • 6.6 UE Mode of Operation
  • 6.7 Function of E-UTRAN in a VoLTE Call
  • Chapter Summary
  • Chapter 7 Load Balancing and Network Sharing
  • Introduction
  • 7.1 Core Network Elements Load Balancing
  • 7.1.1 Identification of NAS Node: NRI and Its Source
  • 7.1.2 NAS Node Selection Function
  • 7.2 Network Sharing
  • 7.2.1 GSM/GPRS/LTE RAN Sharing Through MOCN Feature
  • 7.2.2 5G NG-RAN Sharing Through MOCN Feature (Release 16)
  • Chapter Summary
  • Chapter 8 Packets Encapsulations and Their Routing
  • Introduction
  • 8.1 User Data Packets Encapsulations
  • 8.1.1 Packets Encapsulations at the CN and RAN
  • 8.1.2 Packet Encapsulations over Air Interface
  • 8.2 IP Packet Routing in Mobile Communications Networks
  • 8.3 IP Header Compression and Decompression
  • Chapter Summary
  • Chapter 9 Security Features in Mobile Communications Networks
  • Introduction
  • 9.1 A Brief on the Security Architecture: Features and Mechanisms
  • 9.2 Security Features and Its Mechanisms
  • 9.3 GSM Security Procedures
  • 9.4 UMTS, LTE, and 5G: AS and NAS Layer Security Procedures
  • 9.5 Security Contexts
  • 9.6 Security Interworking
  • Chapter Summary
  • Part II Operations and Maintenances
  • Chapter 10 Alarms and Faults Managements
  • Introduction
  • 10.1 Network Elements Alarm and Its Classifications
  • 10.2 Sources of Abnormal Events and Alarms
  • 10.3 Identifying Sources of Alarms from 3GPP TSs
  • 10.3.1 Abnormal Conditions
  • 10.3.2 Protocol Layer Error Handling
  • 10.3.3 Abnormal Conditions Due to Local Errors
  • 10.4 Design and Implementation of an Alarm Management System
  • 10.4.1 Design and Components of an Alarm
  • 10.4.2 Alarm Application Programming Interfaces (APIs)
  • 10.4.3 Alarm Database
  • 10.5 Alarm Due to Protocol Error
  • 10.5.1 Sample Protocol Error Alarm Description
  • 10.6 Alarm Due to Abnormal Conditions
  • 10.6.1 Normal Scenario
  • 10.6.2 Abnormal Scenario
  • 10.6.3 Sample Alarm Description
  • 10.6.4 Sample Alarm Generation
  • 10.6.5 Sample Protocol Error Alarm Generation
  • 10.7 How to Troubleshoot Protocol Error Using the Alarm Data
  • Chapter Summary
  • Chapter 11 Performance Measurements and Optimizations of Mobile Communications Networks
  • Introduction
  • 11.1 Counters for Performance Measurements and Optimizations
  • 11.2 Performance and Optimizations Management System
  • 11.3 Key Performance Indicator (KPI)
  • 11.3.1 What Is a KPI?
  • 11.3.2 KPI Domains
  • 11.3.3 KPI for Signaling or Control Plane
  • 11.3.4 KPI for User or Data Plane
  • 11.3.5 KPI Categories
  • 11.3.6 KPI Evaluation Steps
  • 11.3.7 Troubleshooting and Improving KPI
  • 11.3.8 Components of a KPI Definition
  • Chapter Summary
  • Chapter 12 Troubleshooting of Mobile Communications Networks Issues
  • Introduction
  • 12.1 Air Interface-Related Issues
  • 12.1.1 Drive Test, Data Collection, and Its Analysis
  • 12.2 Debugging Issues with IP-Based Logical Interface
  • 12.2.1 IP Protocol Analyzer
  • 12.2.2 Network/Application Throughput Issue
  • 12.2.3 Switch Port Mirroring
  • 12.3 Conformance Testing Issues
  • 12.3.1 Example: Mobile Device (MS)/User Equipment (UE) Conformance Test
  • 12.3.2 Example: Location Area Update Request
  • 12.4 Interoperability Testing (IOT) Issues
  • 12.5 Interworking Issues
  • 12.6 Importance of Log/Traces and Its Collections
  • 12.7 Steps for Troubleshooting
  • Chapter Summary
  • Part III Mobile Communications Systems Development
  • Chapter 13 Core Software Development Fundamentals
  • Introduction
  • 13.1 A Brief on Software Development Fundamentals
  • 13.1.1 Requirements Phase
  • 13.1.2 Design
  • 13.1.3 Implementation
  • 13.1.4 Integration and Testing
  • 13.1.5 Operation and Maintenance
  • 13.2 Hardware Platforms: Embedded System, Linux Versus PC
  • 13.2.1 System Development Using Embedded System Board
  • 13.2.2 System Development Using Multicore Hardware Platform
  • 13.2.2.1 What Is a Core?
  • 13.2.2.2 Network Element Development Using Multicore Platform
  • 13.2.2.3 Runtime Choices of Multicore Processor
  • 13.2.2.4 Software Programming Model for Multicore Processor
  • 13.3 Selecting Software Platforms and Features
  • 13.3.1 Selecting Available Data/Logical Structures
  • 13.3.1.1 Advanced Data Structures
  • 13.3.1.2 How Data Structure Affects the Application's Performance
  • 13.3.2 Selecting an Operating System Services/Facilities
  • 13.3.2.1 Advance Features of Operating System: IPC
  • 13.4 Software Simulators for a Mobile Communications Network
  • 13.5 Software Root Causes and Their Debugging
  • 13.5.1 Incorrect Usages of Software Library System Calls/APIs
  • 13.5.2 Incorrect Usages of System Resources
  • 13.5.3 Bad Software Programming Practices
  • 13.6 Static Code Analysis of Software
  • 13.7 Software Architecture and Software Organization
  • Example 13.1
  • 13.8 System and Software Requirements Analysis
  • 13.9 Software Quality: Reliability, Scalability, and Availability
  • 13.9.1 Reliability
  • 13.9.2 Scalability
  • 13.9.3 Availability
  • Chapter Summary
  • Chapter 14 Protocols, Protocol Stack Developments, and Testing
  • Introduction
  • 14.1 Components of a 3GPP Protocol TS
  • 14.2 3GPP Protocol Layer Structured Procedure Description
  • 14.3 Protocol Layer Communications
  • 14.3.1 Layer-to-Layer Communication Using Service Primitives
  • 14.3.2 Layer-to-Layer Communication: SAP
  • 14.3.3 Peer-to-Peer Layer Communication: PDU and Service Data Unit (SDU)
  • 14.3.4 Types of PDU
  • 14.3.5 Formats of PDU
  • 14.4 Air Interface Message Format: Signaling Layer 3
  • 14.4.1 A Brief on the Air Interface Layer 3 Protocol Stack
  • 14.4.2 Classification of Layer 3 Messages
  • 14.4.3 Layer 3 Protocol Header: Signaling Message Format
  • 14.4.4 Layer 3 Protocol Header: Protocol Discriminator
  • 14.4.5 Layer 3 Protocol Header: GSM, GPRS Skip Indicator
  • 14.4.6 Layer 3 Protocol Header: GSM, GPRS Transaction Identifier
  • 14.4.7 Layer 3 Protocol Header: LTE/EPS Bearer Identity
  • 14.4.8 Layer 3 Protocol Header: 5GSM PDU Session Identity
  • 14.4.9 Constructing a Layer 3 Message
  • 14.4.10 Security Protected LTE/EPS and 5G NAS Layer MM Messages
  • 14.4.11 Layer 3 Protocol Layer's Message Dump
  • 14.5 Air Interface Message Format: Layer 2
  • 14.6 RAN - CN Signaling Messages
  • 14.6.1 Protocol Layer Elementary Procedure
  • 14.6.2 Types and Classes of EPs
  • 14.6.3 EPs Code
  • 14.6.4 Criticality of IE
  • 14.6.5 Types of Protocol Errors and Its Handling
  • 14.6.6 Choices of Triggering Message
  • 14.6.7 Message Type
  • 14.6.8 Message Description
  • 14.6.9 Example: LTE/EPS S1 Interface: S1 Setup Procedure
  • 14.7 Modes of Operation of a Protocol Layer
  • 14.8 Example of a Protocol Primitive and PDU Definition
  • 14.9 Example of a Protocol Layer Frame Header Definition
  • 14.10 Examples of System Parameters
  • 14.11 Examples of Protocol Information Elements and Its Identifier
  • 14.12 3GPP Release Specific Changes Implementation
  • 14.13 Examples of Protocol Messages Types
  • 14.14 Protocol Layer Timer Handling
  • 14.15 Protocol Layer Development Using State Machine
  • 14.16 Protocol Layer Development Using Message Passing
  • 14.17 Protocol Layer Data and its Types
  • 14.18 Protocol Layer Control and Configuration
  • 14.19 Protocol Context Information
  • 14.20 Protocol Layer Message Padding
  • 14.21 Device Driver Development
  • 14.22 Guidelines for Protocol Stack/Layer Development
  • 14.23 Software Profiling, Tools and Performance Improvement
  • 14.24 Protocol Stack Testing and Validation
  • Chapter Summary
  • Chapter 15 Deriving Requirements Specifications from a TS
  • Introduction
  • 15.1 3GPP Protocol Layer Procedures
  • 15.1.1 LTE UE Mode of Operation Requirements
  • 15.1.2 LTE UE ATTACH Procedure Requirements
  • 15.1.3 LTE UE DETACH Procedure Requirements
  • 15.1.4 LTE UE Tracking Area Update Procedure Requirements
  • 15.2 3GPP System Feature Development Requirements
  • 15.2.1 Identification of System/Network Elements Interfaces Changes
  • 15.2.2 Identifications of Impacts on Performance
  • 15.2.3 Identifications of Impacts on Feature Management
  • 15.2.4 Identification of Interworking Requirements with Existing Features
  • 15.2.5 Charging and Accounting Aspects
  • 15.3 Example Feature: Radio Access Network Sharing
  • 15.3.1 Effects on Network Elements
  • 15.3.2 Effects on Logical Interfaces
  • 15.3.3 Selection of Core Network Operator: PLMN Id
  • 15.4 Example: Interworking/Interoperations
  • 15.4.1 Circuit-Switched Fall Back (CSFB)
  • 15.4.2 Single Radio Voice Call Continuity (SRVCC)
  • 15.5 3GPP System Feature and High-Level Design
  • Chapter Summary
  • Part IV 5G System and Network
  • Chapter 16 5G Network: Use Cases and Architecture
  • Introduction
  • 16.1 5G System (5GS) Use Cases
  • 16.1.1 Enablers and Key Principles of 5GS Use Cases
  • 16.1.2 Other Enablers in 5G System
  • 16.2 Support of Legacy Services by 5G System
  • 16.3 5G System Network Architecture
  • 16.3.1 3GPP Access Architecture
  • 16.3.2 Non-3GPP Access Architecture
  • 16.4 5G System NG-RAN/gNB Logical Architecture
  • 16.5 5GC System Architecture Elements
  • 16.6 5G System Deployment Solutions
  • 16.6.1 E-UTRA-NR Dual Connectivity (EN-DC) for NSA Deployment
  • 16.7 5G System and LTE/EPS Interworking
  • 16.7.1 RAN-Level Interworking
  • 16.7.2 Core Network (CN) Level Interworking: N26 Interface
  • 16.7.2.1 Single Registration Mode with N26 Interface
  • 16.7.2.2 Dual Registration Mode: Without N26 Interface
  • 16.8 5G System Native and Mapped Network Identities
  • 16.8.1 Mobility Area Identifiers
  • 16.8.2 UE/Subscriber Permanent Identifiers
  • 16.8.3 Core Network Identifiers
  • 16.8.4 RAN Identifiers
  • 16.8.5 Core Network Temporary Identities
  • 16.9 5G System Network Slicing
  • 16.9.1 Identities for a Network Slice
  • 16.9.2 Impacts of Network Slicing Feature
  • 16.10 Management and Orchestration (MANO) of 5G Network
  • 16.11 5G System Security
  • 16.11.1 UE Authentication Frameworks and Methods
  • 16.11.2 Primary Authentication and Secondary Authentication
  • 16.11.3 Key Hierarchy and Authentication Vector
  • 16.11.4 New Security Requirements in 5G System
  • 16.11.5 Subscriber Identities/Privacy Protection
  • Chapter Summary
  • Chapter 17 Introduction to GSM, UMTS, and LTE Systems Air Interface
  • Introduction
  • 17.1 Air Interfaces Protocol Architectures
  • 17.2 Protocol Sublayers
  • 17.3 Control Plane and User Plane Protocols
  • 17.4 Protocols Domains Classifications
  • 17.5 Access Stratum and Non-access Stratum
  • 17.6 Message Formats
  • 17.7 Security Over the Air Interface
  • 17.8 Piggybacking for Reduction of Signaling Overhead
  • 17.8.1 Examples Piggybacking of Signaling Messages
  • Chapter Summary
  • Chapter 18 5G NR Air Interface: Control Plane Protocols
  • Introduction
  • 18.1 NR Control Plane Protocol Layers
  • 18.2 Session Management (5G SM) Layer
  • 18.2.1 Procedures of 5G SM Layer
  • 18.2.2 PDU Session Types
  • 18.2.3 PDU Session and Service Continuity (SSC)
  • 18.2.4 PDU Sessions for Network Slices
  • 18.2.5 Session Management (SM) Layer States
  • 18.3 Quality of Service (5G QoS)
  • 18.3.1 LTE/EPS QoS Model: EPS Bearer
  • 18.3.2 5GS QoS Model: QoS Flow
  • 18.3.3 GTP-U Plane Tunnel for PDU Session
  • 18.3.4 Service Data Flow and PCC Rule
  • 18.3.5 Binding of Service Data Flow
  • 18.3.6 QoS Profile and QFI
  • 18.3.7 QoS Rule and QRI
  • 18.3.8 Mapping QoS Flow to Data Radio Bearer
  • 18.3.9 Downlink Data Flow Through GTP-U Plane Tunnels
  • 18.4 Mobility Management (5G MM) Layer
  • 18.4.1 Mobility Area Concepts and Identifiers
  • 18.4.2 Requirements of Mobility Management Functions
  • 18.4.3 Functions and Procedures of 5G MM Layer
  • 18.4.4 Mobility Management Layer States
  • 18.4.5 Connection Management (CM) and Service Request
  • 18.4.6 Mobility Pattern of UE
  • 18.5 RRC Layer
  • 18.5.1 Functions and Procedures of RRC Layer
  • 18.5.2 System Information (SI) Broadcast
  • 18.5.3 RRC Layer States
  • 18.5.4 RRC INACTIVE State
  • 18.5.5 Mobility of UE
  • 18.5.5.1 UE Mobility in RRC IDLE State
  • 18.5.5.2 UE Mobility in RRC INACTIVE State
  • 18.5.5.3 UE Mobility in RRC CONNECTED State
  • 18.5.6 Admission Control
  • Chapter Summary
  • Chapter 19 5G NR Air Interface: User Plane Protocols
  • Introduction
  • 19.1 NR User Plane Protocol Layers
  • 19.2 SDAP Layer
  • 19.3 PDCP Layer
  • 19.4 RLC Layer
  • 19.5 MAC Layer
  • 19.5.1 Functions and Procedures
  • 19.5.2 Scheduling Procedure
  • 19.5.3 Random Access Procedure
  • 19.5.4 Error Correction Through HARQ Procedure
  • 19.5.5 Buffer Status Reporting (BSR) Procedure
  • 19.5.6 Scheduling Request (SR) Procedure
  • 19.5.7 Low Latency in the NR Due to Configured Scheduling
  • 19.5.8 MAC Layer PDU and Header Structures
  • 19.5.9 How MAC Layer Ensures Low-Latency Requirements
  • 19.5.10 Channel Structures in NR
  • 19.6 Physical Layer
  • 19.6.1 Principles of Transmissions and Its Directions
  • 19.6.2 Physical Layer Functions, Procedures, and Services
  • 19.6.3 OFDM Symbol
  • 19.6.4 NR Frame and Slot Format
  • 19.6.4.1 Subcarrier Spacing (SCS)/Numerologies (µ)
  • 19.6.4.2 Slots per NR Frame and Subframe
  • 19.6.4.3 Slot Formats in TDD Mode
  • 19.6.4.4 Dynamic TDD
  • 19.6.5 Resource Grid and Resource Block
  • 19.6.5.1 Control Resource Set (CORESET)
  • 19.6.5.2 Common Resource Blocks (CRB)
  • 19.6.5.3 Physical Resource Block (PRB)
  • 19.6.5.4 Virtual Resource Block (VRB)
  • 19.6.5.5 Interleaved and Non-interleaved PRB Allocation
  • 19.6.5.6 PRB Bundling and VRB to PRB Mapping
  • 19.6.5.7 Reference Point "A"
  • 19.6.6 Channel and Transmission Bandwidths
  • 19.6.7 Bandwidth Part (BWP)
  • 19.6.7.1 Types of BWP
  • 19.6.7.2 BWP Configuration
  • 19.6.7.3 BWP Switching and Associated Delay
  • 19.6.8 NR Resource Allocations
  • 19.6.8.1 Frequency Domain Resource Allocation for FDD Transmission
  • 19.6.8.2 Time-Domain Resources Allocation for FDD Transmission
  • 19.6.8.3 Time-Domain Resources Allocation for TDD
  • 19.6.9 Transport Channels and Their Processing Chain
  • 19.6.9.1 CRC Calculation and its Attachment to a Transport Block
  • 19.6.9.2 Code Block Segmentation
  • 19.6.9.3 Channel Encoding with LDPC
  • 19.6.9.4 Rate Matching and Concatenation
  • 19.6.9.5 Multiplexing of UL-SCH Data and Uplink Control Information
  • 19.6.9.6 LDPC Encoding Examples
  • 19.6.10 Physical Channels and Their Processing Chain
  • 19.6.10.1 Physical Channels
  • 19.6.10.2 Channel Mappings
  • 19.6.10.3 Multiple Physical Antenna Transmissions
  • 19.6.10.4 Physical Channel Processing Chain
  • 19.6.10.5 Physical Downlink Control Channel (PDCCH)
  • 19.6.10.6 Physical Uplink Control Channel (PUCCH) and Information (UCI)
  • 19.6.11 Code Block Group-Based Transmissions and Receptions
  • 19.6.12 Physical Signals
  • 19.6.12.1 Reference Signals Transmitted as Part of Physical Channels
  • 19.6.12.2 Sounding Reference Signals
  • 19.6.13 Downlink Synchronization
  • 19.6.14 Millimeter Wave Transmission, Beamforming, and Its Management
  • 19.6.15 Cell-Level Radio Link Monitoring (RLM)
  • 19.6.16 RRM Measurements for UE Mobility
  • 19.6.16.1 RRM Measurement Signals and Their Quantities
  • 19.6.16.2 RRM Measurements Framework
  • 19.6.16.3 Overall RRM Process
  • 19.6.17 Channel State Information (CSI)
  • 19.6.18 Modulation and Coding Schemes (MCSs)
  • 19.6.19 Link Adaptation Procedure
  • 19.6.20 Random Access (RACH) Procedure
  • 19.6.21 NR Radio Resources Management (RRM) Procedure
  • 19.6.22 UE Transmit Power Control
  • 19.6.22.1 Types of Power Control Procedure in NR
  • 19.6.22.2 UE Transmit Power Determination Procedure in NR
  • 19.6.23 Effect of Physical Layer on Data Throughputs
  • Chapter Summary
  • Chapter 20 5G Core Network Architecture
  • Introduction
  • 20.1 Control Plane and User Plane Separation - CUPS
  • 20.1.1 Impacts of CUPS Feature
  • 20.1.2 CUPS in the LTE/EPC Network
  • 20.1.3 CUPS Feature in 5G Core Network
  • 20.2 Service-Based Architecture (SBA)
  • 20.2.1 Network Functions and Its Instances
  • 20.2.2 Network Functions (NFs) and Their Services Interfaces
  • 20.2.3 5G System Architecture with NF
  • 20.2.4 Network Functions and Their Services and Operations
  • 20.2.5 Network Functions Services Framework
  • 20.2.6 Services API for Network Functions
  • 20.2.7 Network Function Selection
  • 20.3 Network Function Virtualization (NFV)
  • Chapter Summary
  • Chapter 21 5G System: Low-level Design
  • Introduction
  • 21.1 Design of 5GC Service Interface and Its Operations
  • 21.2 Design of 5GC NF Service Interface Using UML and C++ Class Diagram
  • 21.3 Usages of C++ Standard Template Library (STL)
  • 21.4 Software Architecture for 5G System
  • 21.4.1 NG-RAN Logical Nodes Software Architecture
  • 21.4.2 5GC Software Architecture
  • 21.5 Data Types Used in 5GC SBI Communications
  • Chapter Summary
  • Chapter 22 3GPP Release 16 and Beyond
  • Introduction
  • 22.1 5GS Enhancements as Part of Release 16
  • 22.2 5GS New Features as Part of Release 16
  • 22.3 3GPP Release 17
  • Chapter Summary
  • Test Yourself!
  • Introductions
  • A.1 5G Mobile Communications and Systems Concepts
  • A.2 Software Program Development Exercises
  • A.2.1 Generic Utility and Re-Useable Software
  • A.2.2 5G System Protocol Layer Development
  • References
  • Index
  • EULA

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

117,99 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen