Emulsions

Formation, Stability, Industrial Applications
 
 
De Gruyter (Verlag)
  • 1. Auflage
  • |
  • erschienen am 21. März 2016
  • |
  • XVI, 226 Seiten
 
E-Book | ePUB mit Wasserzeichen-DRM | Systemvoraussetzungen
E-Book | PDF mit Wasserzeichen-DRM | Systemvoraussetzungen
E-Book | PDF ohne DRM | Systemvoraussetzungen
978-3-11-045224-2 (ISBN)
 
Chapter 1 General IntroductionDefinition of emulsions and the role of the emulsifier. Classification based on the nature of the emulsifier. Classification based on the structure of the system. General instability problems with emulsions : creaming/sedimentation, flocculation, Ostwald ripening, coalescence and phase inversion. Importance of emulsions in various industrial applications. Chapter 2 Thermodynamics of Emulsion Formation and BreakdownApplication of the second law of thermodynamics for emulsion formation : Balance of energy and entropy and non-spontaneous formation of emulsions. Breakdown of the emulsion by flocculation and coalescence in the absence of an emulsifier. Role of the emulsifier in preventing flocculation and coalescence by creating an energy barrier resulting from the repulsive energies between the droplets. Chapter 3 Interaction Forces between Emulsion DropletsVan der Waals attraction and its dependence on droplet size, Hamaker constant and separation distance between the droplets. Electrostatic repulsion resulting from the presence of electrical double layers and its dependence on surface (or zeta) potential and electrolyte concentration and valency. Combination of the van der Waals attraction with double layer repulsion and the theory of colloid stability. Steric repulsion resulting from the presence of adsorbed non-ionic surfactants and polymers. Combination of van der Waals attraction with steric repulsion and the theory of steric stabilisation. Chapter 4 Adsorption of Surfactants at the Oil/Water InterfaceThermodynamic analysis of surfactant adsorption and the Gibbs adsorption isotherm. Calculation of the amount of surfactant adsorption and area per surfactant molecule at the interface. Experimental techniques for measuring the interfacial tension. Chapter 5 Mechanism of Emulsification and the Role of the EmulsifierDescription of the factors responsible for droplet deformation and its break-up. Role of surfactant in preventing coalescence during emulsification. Definition of the Gibbs dilational elasticity and the Marangoni effect in preventing coalescence. Chapter 6 Methods of EmulsificationPipe flow, static mixers and high speed stirrers (rotor-stator mixer). Laminar and turbulent flow. Membrane emulsification. High pressure homogenisers and ultrasonic methods. Chapter 7 Selection of EmulsifiersThe hydrophilic-lipophilic-balance (HLB) and its application in surfactant selection. Calculation of HLB numbers and the effect of the nature of the oil phase. The phase inversion temperature (PIT) method for emulsifier selection. The cohesive energy ratio method for emulsifier selection. Chapter 8 Creaming/Sedimentation of Emulsions and its preventionDriving force for creaming/sedimentation: effect of gravity, droplet size and density difference between the oil and continuous phase. Calculation of the rate of creaming/sedimentation in dilute emulsions. Influence of increase of the volume fraction of the disperse phase on the rate of creaming/sedimentation. Reduction of creaming/sedimentation: Balance of the density of the two phases, reduction of droplet size and effect of addition of ''thickeners'. Chapter 9 Flocculation of Emulsions and its PreventionFactors affecting flocculation. Calculation of fast and slow flocculation rate. Definition of stability ratio and its dependence on electrolyte concentration and valency. Definition of the critical coagulation concentration and its dependence on electrolyte valency. Reduction of flocculation by enhancing the repulsive forces. Chapter 10 Ostwald Ripening and its ReductionFactors responsible for Ostwald ripening : difference in solubility between small and large droplets and the Kelvin equation. Calculation of the rate of Ostwald ripening. Reduction of Ostwald ripening by incorporation of a small amount of highly insoluble oil. Reduction of Ostwald ripening by the use of strongly adsorbed polymeric surfactant and enhancement of the Gibbs elasticity. Chapter 11 Emulsion Coalescence and its PreventionDriving force for emulsion coalescence : Thinning and disruption of the liquid film between the droplets. The concept of disjoining pressure for prevention of coalescence. Methods for reduction or elimination of coalescence : Use of mixed surfactant films, use of lamellar liquid crystalline phases and use of polymeric surfactants. Chapter 12 Phase Inversion and its PreventionDistinction between catastrophic and transient phase inversion. Influence of the disperse volume fraction and surfactant HLB number. Explanation of the factors responsible for phase inversion. Chapter 13 Characterisation of EmulsionsMeasurement of droplet size distribution : Optical microscopy and image analysis. Phase contrast and polarising microscopyDiffraction methods. Confocal laser microscopy. Back scattering methods Chapter 14 Industrial Application of Emulsions14.1 Application in Pharmacy14.2 Application in Cosmetics 14.3 Application in Agrochemicals14.4 Application in Paints14.5 Application in the Oil Industry
  • Englisch
  • Berlin/Boston
  • |
  • Deutschland
  • US School Grade: From College Freshman to College Senior
  • 30
  • |
  • 30 farbige Abbildungen, 10 s/w Tabellen, 30 s/w Abbildungen
  • |
  • 30 b/w and 30 col. ill., 10 b/w tbl.
  • Breite: 170 mm
  • 6,06 MB
978-3-11-045224-2 (9783110452242)
3110452243 (3110452243)
http://www.degruyter.com/isbn/9783110452242
weitere Ausgaben werden ermittelt
Tharwat F. Tadros, Wokingham, UK.
  • Intro
  • Preface
  • Contents
  • 1 Emulsions: Formation, stability, industrial applications
  • 1.1 General introduction
  • 1.2 Nature of the Emulsifier
  • 1.3 Structure of the system
  • 1.4 Breakdown processes in emulsions
  • 1.5 Creaming and sedimentation
  • 1.6 Flocculation
  • 1.7 Ostwald ripening (disproportionation)
  • 1.8 Coalescence
  • 1.9 Phase inversion
  • 1.10 Industrial applications of emulsions
  • 1.11 Book outline
  • 2 Thermodynamics of emulsion formation and breakdown
  • 2.1 The interface (Gibbs dividing line)
  • 2.2 Thermodynamics of emulsion formation and breakdown
  • 3 Interaction forces between emulsion droplets
  • 3.1 Van der Waals attraction
  • 3.2 Electrostatic repulsion
  • 3.3 Steric repulsion
  • 3.3.1 Mixing interaction Gmix
  • 3.3.2 Elastic interaction Gel
  • 3.3.3 Total energy of interaction
  • 3.3.4 Criteria for effective steric stabilization
  • 4 Adsorption of surfactants at the oil/water interface
  • 4.1 Introduction
  • 4.2 The Gibbs adsorption isotherm
  • 4.3 Equation of state ppproach
  • 4.4 The Langmuir, Szyszkowski and Frumkin equations
  • 4.5 Effectiveness of surfactant adsorption at the liquid/liquid interface
  • 4.6 Efficiency of adsorption of surfactant at the liquid/liquid interface
  • 4.7 Adsorption from mixtures of two surfactants
  • 4.8 Adsorption of macromolecules
  • 4.9 Interfacial tension measurements
  • 4.9.1 The Wilhelmy plate method
  • 4.9.2 The pendent drop method
  • 4.9.3 Sessile drop method
  • 4.9.4 The Du Nouy ring method
  • 4.9.5 The drop volume (weight) method
  • 4.9.6 The spinning drop method
  • 5 Mechanism of emulsification and the role of the emulsifier
  • 5.1 Introduction
  • 5.2 Mechanism of emulsification
  • 5.3 Role of surfactants in emulsion formation
  • 5.3.1 Role of surfactants in reduction of droplet size
  • 5.3.2 Role of surfactants in droplet deformation
  • 6 Methods of emulsification
  • 6.1 Introduction
  • 6.2 Rotor-stator mixers
  • 6.2.1 Toothed devices
  • 6.2.2 Batch radial discharge mixers
  • 6.2.3 Design and arrangement
  • 6.3 Flow regimes
  • 6.3.1 Laminar flow
  • 6.3.2 Turbulent flow
  • 6.4 Membrane emulsification
  • 6.5 Formulation variables and comparison of various emulsification methods
  • 7 Selection of emulsifiers
  • 7.1 Introduction
  • 7.2 The hydrophilic-lipophile balance (HLB) concept
  • 7.3 The phase inversion temperature (PIT) concept
  • 7.4 The cohesive energy ratio (CER) concept
  • 7.5 The critical packing parameter (CPP) for emulsion selection
  • 7.6 Stabilisation by solid particles (Pickering emulsions)
  • 8 Creaming/sedimentation of emulsions and its prevention
  • 8.1 Introduction
  • 8.2 Creaming or sedimentation rates
  • 8.2.1 Very dilute emulsions (f f > 0.1)
  • 8.2.3 Concentrated emulsions (f > 0.2)
  • 8.3 Properties of a creamed layer
  • 8.4 Prevention of creaming or sedimentation
  • 8.4.1 Matching density of oil and aqueous phases
  • 8.4.2 Reduction of droplet size
  • 8.4.3 Use of "thickeners"
  • 8.4.4 Reduction of creaming/sedimentation of emulsions using associative thickeners
  • 8.4.5 Controlled flocculation
  • 8.4.6 Depletion flocculation
  • 8.4.7 Use of "inert" fine particles
  • 8.4.8 Use of mixtures of polymers and finely divided particulate solids
  • 8.4.9 Use of liquid crystalline phases
  • 9 Flocculation of emulsions
  • 9.1 Introduction
  • 9.2 Mechanism of emulsion flocculation
  • 9.2.1 Flocculation of electrostatically stabilised emulsions
  • 9.2.2 Flocculation of sterically stabilised emulsions
  • 9.2.3 Weak flocculation of sterically stabilised emulsions
  • 9.2.4 Depletion flocculation
  • 9.2.5 Bridging flocculation by polymers and polyelectrolytes
  • 9.3 General rules for reducing (eliminating) flocculation
  • 9.3.1 Charge stabilised emulsions, e.g. using ionic surfactants
  • 9.3.2 Sterically stabilised emulsions
  • 10 Ostwald ripening in emulsions and its prevention
  • 10.1 Driving force for Ostwald ripening
  • 10.2 Kinetics of Ostwald ripening
  • 10.3 Reduction of Ostwald ripening
  • 10.3.1 Addition of a small proportion of highly insoluble oil
  • 10.3.2 Modification of the interfacial layer for reduction of Ostwald ripening
  • 10.4 Influence of initial droplet size of emulsions on the Ostwald ripening rate
  • 11 Emulsion coalescence and its prevention
  • 11.1 Introduction
  • 11.2 Forces across liquid films
  • 11.2.1 Disjoining pressure approach
  • 11.2.2 Interfacial tension of liquid films
  • 11.3 Film rupture
  • 11.4 Rate of coalescence between droplets
  • 11.5 Reduction of coalescence
  • 11.5.1 Use of mixed surfactant films
  • 12 Phase inversion and its prevention
  • 12.1 Introduction
  • 12.2 Catastrophic inversion
  • 12.3 Transitional inversion
  • 12.4 The phase inversion temperature (PIT)
  • 13 Characterization of emulsions and assessment of their stability
  • 13.1 Introduction
  • 13.2 Assessment of the structure of the liquid/liquid interface
  • 13.2.1 Double layer investigation
  • 13.2.2 Measurement of surfactant and polymer adsorption
  • 13.3 Assessment of creaming/sedimentation of emulsions
  • 13.4 Assessment of flocculation, Ostwald ripening and coalescence
  • 13.4.1 Optical microscopy
  • 13.4.2 Electron microscopy
  • 13.4.3 Confocal laser scanning microscopy (CLSM)
  • 13.5 Scattering techniques
  • 13.5.1 Light-scattering techniques
  • 13.5.2 Turbidity measurements
  • 13.5.3 Light diffraction techniques
  • 13.5.4 Dynamic light scattering - photon correlation spectroscopy (PCS)
  • 13.5.5 Back-scattering techniques
  • 13.6 Measurement of the rate of creaming or sedimentation
  • 13.7 Measurement of rate of flocculation
  • 13.8 Measurement of incipient flocculation
  • 13.9 Measurement of Ostwald ripening
  • 13.10 Measurement of the rate of coalescence
  • 13.11 Bulk properties of emulsions. Equilibrium cream or sediment volume (or height)
  • 14 Industrial applications of emulsions
  • 14.1 Introduction
  • 14.2 Food emulsions
  • 14.2.1 Food grade surfactants
  • 14.2.2 Surfactant association structures, micro-emulsions and emulsions in food
  • 14.3 Emulsions in cosmetics and personal care formulations
  • 14.4 Emulsions in pharmacy
  • 14.5 Emulsions in agrochemicals
  • 14.6 Rolling oil and lubricant emulsions
  • Index

Dateiformat: EPUB
Kopierschutz: Wasserzeichen-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Verwenden Sie eine Lese-Software, die das Dateiformat EPUB verarbeiten kann: z.B. Adobe Digital Editions oder FBReader - beide kostenlos (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Wasserzeichen-DRM wird hier ein "weicher" Kopierschutz verwendet. Daher ist technisch zwar alles möglich - sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Wasserzeichen-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Verwenden Sie zum Lesen die kostenlose Software Adobe Reader, Adobe Digital Editions oder einen anderen PDF-Viewer Ihrer Wahl (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie die kostenlose App Adobe Digital Editions oder eine andere Lese-App für E-Books (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nur bedingt: Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Wasserzeichen-DRM wird hier ein "weicher" Kopierschutz verwendet. Daher ist technisch zwar alles möglich - sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: ohne DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Verwenden Sie zum Lesen die kostenlose Software Adobe Reader, Adobe Digital Editions oder einen anderen PDF-Viewer Ihrer Wahl (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie die kostenlose App Adobe Digital Editions oder eine andere Lese-App für E-Books (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nur bedingt: Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Ein Kopierschutz bzw. Digital Rights Management wird bei diesem E-Book nicht eingesetzt.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

59,95 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Wasserzeichen-DRM
siehe Systemvoraussetzungen
PDF mit Wasserzeichen-DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

59,95 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
PDF ohne DRM
siehe Systemvoraussetzungen
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok