Abbildung von: Matrix and Tensor Factorization Techniques for Recommender Systems - Springer

Matrix and Tensor Factorization Techniques for Recommender Systems

Springer (Verlag)
Erschienen am 29. Januar 2017
VI, 102 Seiten
PDF mit Wasserzeichen-DRM
978-3-319-41357-0 (ISBN)
69,54 €inkl. 7% MwSt.
für PDF mit Wasserzeichen-DRM
E-Book Einzellizenz
Als Download verfügbar

This book presents the algorithms used to provide recommendations by exploiting matrix factorization and tensor decomposition techniques. It highlights well-known decomposition methods for recommender systems, such as Singular Value Decomposition (SVD), UV-decomposition, Non-negative Matrix Factorization (NMF), etc. and describes in detail the pros and cons of each method for matrices and tensors. This book provides a detailed theoretical mathematical background of matrix/tensor factorization techniques and a step-by-step analysis of each method on the basis of an integrated toy example that runs throughout all its chapters and helps the reader to understand the key differences among methods. It also contains two chapters, where different matrix and tensor methods are compared experimentally on real data sets, such as Epinions, GeoSocialRec,, BibSonomy, etc. and provides further insights into the advantages and disadvantages of each method.

The book offers a rich blend of theory and practice, making it suitable for students, researchers and practitioners interested in both recommenders and factorization methods. Lecturers can also use it for classes on data mining, recommender systems and dimensionality reduction methods.

"This carefully written book offers advanced undergraduates, graduate students, researchers and professionals a comprehensive overview of the general concepts and techniques (e.g., models and algorithms) related to matrix and tensor factorization in the field of recommender systems, with a rich blend of theory and practice. . I am definitely a recommender of this book!" (Bruno Carpentieri, Mathematical Reviews, August, 2017)

1st ed. 2016
Springer International Publishing
29 s/w Abbildungen, 22 farbige Abbildungen
VI, 102 p. 51 illus., 22 illus. in color.
3,12 MB
978-3-319-41357-0 (9783319413570)
Schweitzer Klassifikation
Thema Klassifikation
DNB DDC Sachgruppen
Dewey Decimal Classfication (DDC)
BIC 2 Klassifikation
BISAC Klassifikation
Warengruppensystematik 2.0
Panagiotis Symeonidis is Adjunct Assistant Professor at the Aristotle University of Thessaloniki, Greece. He is the co-author of 2 international books, 18 journal papers, 4 book chapters and more than 28 articles in international conference proceedings. His articles have received almost 1400 citations from other scientific publications. He teaches courses on databases, data mining and data. For almost four years, he was the head of 1st EK (Laboratory Center) of Stavroupolis between September 2011 to July 2015. His research interests focus on recommender systems, social media in Web 2.0 and time-evolving online social networks.
Andreas Zioupos has a B.Sc. degree in Mathematics and received his M.Sc. degree in Informatics & Management in 2015 from the Aristotle University of Thessaloniki, under the supervision of Dr. Panagiotis Symeonidis. He is an instructor for Google web tools and also has currently a contract as freelancer with the University of Piraeus on the project "Creating a framework for documentation, collection and disposal in the form of Linked Open Data from research results and official data of general government relating to domestic economic activity". His research interests focus on data mining, recommender systems and dimensionality reduction methods.

Part I Matrix Factorization Techniques.- 1. Introduction.- 2. Related Work on Matrix Factorization.- 3. Performing SVD on matrices and its Extensions.- 4. Experimental Evaluation on Matrix Decomposition Methods.- Part II Tensor Factorization Techniques.- 5. Related Work on Tensor Factorization.- 6. HOSVD on Tensors and its Extensions.- 7. Experimental Evaluation on Tensor Decomposition Methods.- 8 Conclusions and Future Work.

Dateiformat: PDF
Kopierschutz: Wasserzeichen-DRM (Digital Rights Management)


  • Computer (Windows; MacOS X; Linux): Verwenden Sie zum Lesen die kostenlose Software Adobe Reader, Adobe Digital Editions oder einen anderen PDF-Viewer Ihrer Wahl (siehe E-Book Hilfe).
  • Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions oder die App PocketBook (siehe E-Book Hilfe).
  • E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nur bedingt: Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Wasserzeichen-DRM wird hier ein „weicher” Kopierschutz verwendet. Daher ist technisch zwar alles möglich – sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.

Weitere Informationen finden Sie in unserer  E-Book Hilfe.