Mastering Machine Learning with Python in Six Steps

A Practical Implementation Guide to Predictive Data Analytics Using Python
 
 
Apress
  • erschienen am 5. Juni 2017
  • |
  • XXI, 358 Seiten
 
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
E-Book | PDF mit Wasserzeichen-DRM | Systemvoraussetzungen
978-1-4842-2866-1 (ISBN)
 

Master machine learning with Python in six steps and explore fundamental to advanced topics, all designed to make you a worthy practitioner.

This book's approach is based on the "Six degrees of separation" theory, which states that everyone and everything is a maximum of six steps away. Mastering Machine Learning with Python in Six Steps presents each topic in two parts: theoretical concepts and practical implementation using suitable Python packages.

You'll learn the fundamentals of Python programming language, machine learning history, evolution, and the system development frameworks. Key data mining/analysis concepts, such as feature dimension reduction, regression, time series forecasting and their efficient implementation in Scikit-learn are also covered. Finally, you'll explore advanced text mining techniques, neural networks and deep learning techniques, and their implementation.

All the code presented in the book will be available in the form of iPython notebooks to enable you to try out these examples and extend them to your advantage.

What You'll Learn
  • Examine the fundamentals of Python programming language
  • Review machine Learning history and evolution
  • Understand machine learning system development frameworks
  • Implement supervised/unsupervised/reinforcement learning techniques with examples
  • Explore fundamental to advanced text mining techniques
  • Implement various deep learning frameworks

Who This Book Is For

Python developers or data engineers looking to expand their knowledge or career into machine learning area.

Non-Python (R, SAS, SPSS, Matlab or any other language) machine learning practitioners looking to expand their implementation skills in Python.

Novice machine learning practitioners looking to learn advanced topics, such as hyperparameter tuning, various ensemble techniques, natural language processing (NLP), deep learning, and basics of reinforcement learning.


1st ed.
  • Englisch
  • CA
  • |
  • USA
APRESS
  • 151
  • |
  • 21 s/w Abbildungen, 151 farbige Abbildungen
  • |
  • 21 schwarz-weiße und 151 farbige Abbildungen, Bibliographie
  • 10,15 MB
978-1-4842-2866-1 (9781484228661)
10.1007/978-1-4842-2866-1
weitere Ausgaben werden ermittelt
Manohar Swamynathan is a data science practitioner and an avid programmer with over 13 years of experience in various data science related areas that include data warehousing, Business Intelligence (BI), analytical tool development, ad-hoc analysis, predictive modeling, data science product development, consulting, formulating strategy and executing analytics program. He's had a career covering life cycle of data across different domains, such as US mortgage banking, retail, insurance, and industrial IoT. He has a bachelor's degree with a specialization in physics, mathematics, computers, and a master's degree in project management. He's currently living in Bengaluru, the Silicon Valley of India, working as Staff Data Scientist with GE Digital, contributing to the next big digital industrial revolution.



DNB DDC Sachgruppen

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Wasserzeichen-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Verwenden Sie zum Lesen die kostenlose Software Adobe Reader, Adobe Digital Editions oder einen anderen PDF-Viewer Ihrer Wahl (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie die kostenlose App Adobe Digital Editions oder eine andere Lese-App für E-Books (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nur bedingt: Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Wasserzeichen-DRM wird hier ein "weicher" Kopierschutz verwendet. Daher ist technisch zwar alles möglich - sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

39,99 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen

39,99 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Wasserzeichen-DRM
siehe Systemvoraussetzungen
E-Book bestellen