Viral Gastroenteritis

Molecular Epidemiology and Pathogenesis
 
 
Academic Press
  • 1. Auflage
  • |
  • erschienen am 27. Juni 2016
  • |
  • 588 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-802659-5 (ISBN)
 

Viral Gastroenteritis: Molecular Epidemiology and Pathogenesis provides a comprehensive review of research on viruses causing acute gastroenteritis in infants and young children, including coverage of rotaviruses, human caliciviruses, astroviruses, enteric adenoviruses, and viruses causing gastroenteritis more rarely. Includes general chapters on gastrointestinal physiology and pathophysiology, gastrointestinal immune mechanisms, immunodeficiencies and host genetics influencing susceptibility to viral gastroenteritis, and therapeutic and preventative approaches.

The book also includes special sections on virus particle structures, replication cycles, pathogenesis, immunology, epidemiology, and preventative measures. This book covers both basic science and translational applications and is an appropriate resource for virologists, molecular biologists, epidemiologists, gastroenterologists, vaccinologists, and those with an interest in public health.


  • Features new approaches in diagnosis and characterization of viral gastroenteritis pathogens
  • Includes coverage of therapeutic and preventative methods
  • Covers recent advances in characterizing the molecular biology and immune responses of rotaviruses and noroviruses
  • Covers both basic science and translational applications and is an appropriate resource for virologists, molecular biologists, epidemiologists, gastroenterologists, vaccinologists, and those with an interest in public health


Lennart Svensson is the Professor of Molecular Biology at Linköping University. He is presently researching virus disease mechanisms and the human genetics of susceptibility, with particular focus on the rotavirus and the norovirus.During his research, he and his team have contributed many important observations to the field regarding the processes of and reactions to these viruses in the human body.
  • Englisch
  • San Diego
  • |
  • USA
Elsevier Science
  • 23,76 MB
978-0-12-802659-5 (9780128026595)
0128026596 (0128026596)
weitere Ausgaben werden ermittelt
  • Cover
  • Title Page
  • Copyright Page
  • Contents
  • Contributors
  • Introduction
  • References
  • Chapter 1.1 - Gastrointestinal Physiology and Pathophysiology
  • 1 - Introduction
  • 2 - Normal intestinal physiology
  • 2.1 - Fluid Balance in the Intestine
  • 2.2 - Intestinal Absorption
  • 2.2.1 - Sugar Transport
  • 2.2.2 - Amino Acid and Peptide Transport
  • 2.2.3 - Electroneutral NaCl Absorption
  • 2.2.4 - Anion Secretion
  • 2.2.5 - The Enteric Nervous System
  • 3 - Gastrointestinal pathophysiology
  • 4 - Conclusions
  • 5 - Abbreviations
  • References
  • Chapter 1.2 - Immunity in the Gut: Mechanisms and Functions
  • 1 - Introduction
  • 2 - Neonatal adaptive mucosal immunity
  • 3 - Postnatal adaptive mucosal immunity
  • 4 - Mucosa-associated lymphoid tissue
  • 4.1 - Induction of Gut Immunity
  • 4.2 - Additional Sources of Intestinal B Cells
  • 5 - Intestinal immune-effector compartments
  • 5.1 - Lamina Propria B Cells and Their Epithelial Cooperation
  • 5.2 - Secretory Immunity
  • 5.3 - Complexity of Mucosal Antigen Clearance
  • 6 - Difficulties in evaluating the protective effect of secretory immunity
  • 7 - Mucosal T cells and their putative protective roles
  • 7.1 - Phenotypic Heterogeneity
  • 7.2 - Possible Antimicrobial Functions
  • 8 - Conclusions
  • Acknowledgments
  • References
  • Chapter 1.3 - Immunodeficiencies: Significance for Gastrointestinal Disease
  • 1 - Primary immunodeficiency
  • 2 - Gastrointestinal disorderS in PID patients
  • 2.1 - Selective IgA Deficiency
  • 2.1.1 - Selective IgA Deficiency and Gastrointestinal Viral Infections
  • 2.2 - Common Variable Immunodeficiency
  • 2.2.1 - CVID and Viral Infections
  • 2.3 - X-Linked Agammaglobulinemia
  • 2.3.1 - XLA and Viral Infections
  • 2.4 - Hyper IgM Syndrome
  • 2.4.1 - XHIGM and Viral Infections
  • 2.5 - SCID
  • 2.5.1 - SCID and Viral Infections
  • 2.6 - Other Immunodeficiency Diseases and Genetic Factors
  • 3 - Consideration for use of live oral vaccine in immunodeficient patients
  • 3.1 - Oral Rotavirus Vaccine
  • 3.2 - Oral Poliovirus (OPV)
  • 4 - Conclusions and future perspectiveS
  • References
  • Chapter 1.4 - Therapy of Viral Gastroenteritis
  • 1 - Introduction
  • 2 - Background
  • 2.1 - Physiologic Basis of Rehydration
  • 2.2 - Basis of Pharmacotherapy
  • 3 - Clinical assessment
  • 3.1 - History
  • 3.2 - Physical Examination
  • 3.3 - Assessment of Dehydration
  • 4 - Therapy
  • 4.1 - Supportive Measures
  • 4.1.1 - Fluid Replacement and Maintenance
  • 4.1.2 - Diet
  • 4.1.3 - Probiotics
  • 4.1.4 - Zinc
  • 4.2 - Pharmacotherapy
  • 4.2.1 - Antimotility Agents
  • 4.2.2 - Antiemetics
  • 4.2.3 - Antisecretory Agents
  • 4.2.4 - Nonspecific Agents
  • 4.2.5 - Immune Active Agents
  • 4.3 - Special Clinical Scenarios
  • 5 - Conclusions
  • References
  • Chapter 2.1 - Structure and Function of the Rotavirus Particle
  • 1 - Rotavirus particle
  • 2 - Outer layer
  • 3 - Middle and inner layers: the DLP
  • 4 - Conclusions
  • References
  • Chapter 2.2 - Rotavirus Attachment, Internalization, and Vesicular Traffic
  • 1 - Initial interactions of the virus with the host cell
  • 1.1 - Virus Attachment
  • 1.2 - Postattachment Interactions
  • 2 - Virus internalization
  • 2.1 - The Endosomal Network and the ESCRT Machinery
  • 3 - M6PR and cathepsins in rotavirus entry
  • 4 - Penetration and uncoating
  • 5 - Perspectives
  • Acknowledgments
  • References
  • Chapter 2.3 - Rotavirus Replication and Reverse Genetics
  • 1 - Introduction
  • 2 - Rotavirus replication
  • 2.1 - Virus Structure
  • 2.2 - Viral Transcription
  • 2.3 - Viroplasm Formation and Function
  • 2.4 - Genome Replication and Particle Assembly
  • 3 - Reverse genetics systems
  • 3.1 - Fully Recombinant Systems
  • 3.1.1 - MRV
  • 3.1.2 - Orbiviruses: BTV, AHDV, and EHDV
  • 3.1.3 - RV-Attempts at Developing Fully Recombinant RG Systems
  • 3.2 - Rotavirus Single-Gene Replacement Systems
  • 3.2.1 - Gene 4 (VP4)
  • 3.2.2 - Gene 8 (NSP2)
  • 3.2.3 - Gene 7 (NSP3)
  • 3.2.4 - Gene 10 (NSP4)
  • 3.3 - Summary and Future Directions
  • Acknowledgments
  • Note added in proof
  • References
  • Chapter 2.4 - Pleiotropic Properties of Rotavirus Nonstructural Protein 4 (NSP4) and Their Effects on Viral Replication and...
  • 1 - Introduction
  • 2 - Classification and phylogeny of NSP4
  • 3 - NSP4 domain organization
  • 4 - NSP4 structure
  • 5 - The pathophysiology of Rotavirus-Induced disease and characterization of the role of NSP4 in diarrhea induction
  • 6 - Mechanism of NSP4 in diarrhea induction
  • 7 - iNSP4-mediated apoptosis
  • 8 - iNSP4 viroporin-mediated elevation of cytoplasmic calcium
  • 9 - Role of iNSP4 in viral morphogenesis
  • 10 - NSP4-activated immune responses
  • 11 - Concluding remarks and summary
  • Acknowledgments
  • References
  • Chapter 2.5 - Rotavirus Replication: the Role of Lipid Droplets
  • 1 - Introduction
  • 2 - Viroplasms
  • 3 - Lipid droplets
  • 4 - Interaction of viroplasms with lipid droplets
  • 5 - Lipid droplet homoeostasis and rotavirus replication
  • 6 - Lipid droplets, lipid homoeostasis and replication of viruses and other microbes
  • 7 - Future work on lipid droplets and rotavirus replication
  • 8 - Other cellular proteins involved in rotavirus replication
  • 9 - Conclusions
  • References
  • Chapter 2.6 - Rotavirus Disease Mechanisms
  • 1 - Introduction
  • 2 - Clinical symptoms
  • 2.1 - Sickness Response
  • 2.2 - Extra Mucosal Spread of Rotavirus
  • 2.2.1 - Intussusception
  • 2.3 - Rotavirus Infection Delays Gastric Emptying
  • 3 - Nitric oxide in RV illness
  • 4 - Role of prostaglandins and acetylsalicylic acid in Rotavirus diarrhoea
  • 5 - Mechanisms of diarrhoea
  • 6 - Pathology
  • 6.1 - Pathology of Fatal Cases of Rotavirus Infection
  • 7 - Pathophysiology of Rotavirus-induced diarrhoea
  • 7.1 - Effect of Rotavirus Infection on Electrolyte and Fluid Transport
  • 7.2 - Oral Rehydration Corrects Rotavirus-Induced Loss of Electrolytes and Water
  • 8 - Secretory diarrhoea
  • 9 - The NSP4 enterotoxin
  • 10 - The enteric nervous system and enterochromaffin cells
  • 11 - Rotavirus effect on intestinal motility
  • 12 - Permeability
  • 13 - Vomiting and serotonin receptor antagonist treatment
  • References
  • Chapter 2.7 - Gnotobiotic Neonatal Pig Model of Rotavirus Infection and Disease
  • 1 - Introduction
  • 1.1 - Lactobacilli and Bifidobacteria Modulate Innate and Adaptive Immune Responses to Human Rotavirus Infection in Neonata...
  • 1.1.1 - Interactions Among Probiotics, HRV and Innate Immunity (Summarized in Table 2.7.2)
  • 1.1.2 - Functional Effects of Probiotics on Adaptive Immunity to RV (Table 2.7.2)
  • 1.1.3 - Neonatal Pig Models Colonized With Complex Intestinal Microbiota of Human or Swine Origin
  • 1.2 - Interactions Between Lactogenic Immune Factors, Probiotics, Neonatal Immune System and Human Rotavirus Vaccine in a G...
  • 1.3 - Gut Transcriptome Responses to Lactobacillus rhamnosus GG and Lactobacillus acidophilus in Neonatal Gnotobiotic Piglets
  • 1.4 - Prenatal Vitamin A Deficiency Alters Immune Responses to Virulent Human Rotavirus/Human Rotavirus Vaccines in a Gnoto...
  • 1.4.1 - VAD Effects on the Innate Immune Responses
  • 1.4.2 - VAD Effects on the Adaptive Immune Responses
  • 2 - Concluding remarks and future directions
  • References
  • Chapter 2.8 - Innate Immune Responses to Rotavirus Infection
  • 1 - Introduction
  • 2 - Homologous and heterologous Rotaviruses: contrasting paradigms of innate immune regulation
  • 3 - Detection of Rotavirus infection: Host innate sensors involved in Rotavirus recognition
  • 4 - Intermediaries: innate factors relaying Interferon induction during Rotavirus infection
  • 5 - The amplifiers: Rotavirus regulation of the effects of Interferons
  • Acknowledgments
  • References
  • Chapter 2.9 - Human Acquired Immunity to Rotavirus Disease and Correlates of Protection
  • 1 - Introduction
  • 2 - Rotavirus-specific T cells
  • 2.1 - Rotavirus-Specific CD4 T Cells
  • 2.2 - Rotavirus-Specific CD8 T Cells
  • 2.3 - Epitopes Recognized by Rotavirus-Specific T Cells
  • 2.4 - Markers of Intestinal Homing on Rotavirus-Specific T Cells
  • 2.5 - Intestinal Human Rotavirus-Specific T Cells
  • 2.6 - In Vitro Models to Study Human Rotavirus-Specific T Cells
  • 3 - Rotavirus-Specific B cells
  • 4 - Correlates of protection
  • Acknowledgments
  • References
  • Chapter 2.10 - Molecular Epidemiology and Evolution of Rotaviruses
  • 1 - Classification of rotaviruses
  • 2 - Mechanisms of rotavirus evolution and their significance
  • 2.1 - Point Mutation
  • 2.2 - Reassortment
  • 2.3 - Rearrangement
  • 2.4 - Recombination
  • 2.5 - Interspecies Transmission
  • 3 - Laboratory methods used to study the molecular epidemiology of rotaviruses
  • 3.1 - Serotyping and Subgrouping
  • 3.2 - Electropherotyping
  • 3.3 - Whole Genome Hybridization
  • 3.4 - Multiplex Genotyping PCR and Sequencing
  • 3.5 - Whole Genome Sequencing
  • 4 - Trends in rotavirus strain prevalence in humans
  • 4.1 - Global Genotype Distribution
  • 4.2 - Regional Genotype Patterns
  • 4.3 - Local Genotype Patterns
  • 4.4 - Temporal Changes in Genotype Distributions
  • 4.5 - Local Persistence, Global Spread
  • 4.6 - Impact of Vaccination on Genotype Distributions
  • 5 - Rotavirus transmission dynamics: Driving forces behind epidemiological trends
  • 5.1 - What can Mathematical Models Tell us About Rotavirus Transmission?
  • 6 - Conclusions
  • Acknowledgments
  • References
  • Chapter 2.11 - Rotavirus Vaccines and Vaccination
  • 1 - Introduction
  • 2 - Rotavirus vaccines
  • 2.1 - Heterologous (Animal) Rotavirus Vaccines
  • 2.1.1 - RIT4237 (NCDV) Bovine RV Vaccine
  • 2.1.2 - WC-3 Bovine RV Vaccine
  • 2.1.3 - Rhesus RV (RRV) Vaccine
  • 2.1.4 - Lamb RV Vaccine
  • 2.2 - Animal-Human Rotavirus Reassortant Vaccines
  • 2.2.1 - Rhesus-Human Reassortant Vaccine
  • 2.2.2 - Bovine-Human Reassortant Vaccine
  • 2.3 - Human Rotavirus Vaccines
  • 2.3.1 - Rotarix
  • 2.3.2 - Other Human RV Vaccine Strains
  • 3 - Immune Response and Mechanism of Action
  • 4 - Comparative efficacy
  • 4.1 - Developed Countries
  • 4.2 - Latin America
  • 4.3 - Africa and South East Asia
  • 5 - Real life effectiveness
  • 5.1 - Serotype (Genotype) Specific Effectiveness
  • 5.2 - Impact of Rotavirus Vaccination-Direct and Indirect
  • 5.3 - Introduction of Universal Rotavirus Vaccination
  • 5.4 - Rotavirus Vaccine Recommendations
  • 5.5 - Special Target Groups
  • 5.5.1 - Premature Infants
  • 5.5.2 - HIV Infected Children
  • 5.5.3 - Immunodeficiency
  • 5.5.4 - Short Gut Syndrome and Intestinal Failure
  • 5.6 - Factors Associated With Reduced Uptake of Rotavirus Vaccine
  • 5.6.1 - Breast-Feeding
  • 5.6.2 - Influence of Oral Polio Vaccine (OPV)
  • 5.6.3 - Other Factors
  • 6 - Intussusception
  • 7 - Porcine circovirus
  • 8 - Nonlive Rotavirus vaccines
  • References
  • Chapter 3.1 - Structural Biology of Noroviruses
  • 1 - Introduction
  • 2 - Genome organization
  • 3 - T=3 capsid organization
  • 3.1 - Modular Domain Organization of VP1
  • 3.2 - NTA Interactions
  • 3.3 - Hinge and Interdomain Flexibility
  • 3.4 - Hypervariable P2 Subdomain-Antigenic Diversity and Receptor Binding
  • 3.5 - Capsid Assembly
  • 3.6 - Minor Structural Protein VP2
  • 4 - Glycan recognition and specificity in Noroviruses
  • 4.1 - What are Histo-Blood Group Antigens (HBGAs)?
  • 4.2 - Structural Basis of Genogroup and Genotype-Dependent HBGA Specificity in Human Noroviruses
  • 4.3 - HBGA Binding Sites in GI and GII are Differently Configured
  • 4.4 - Intragenogroup Differences in HBGA Binding
  • 5 - Nonstructural proteins
  • 5.1 - VPg
  • 5.2 - Protease
  • 5.3 - RdRp
  • 6 - Conclusions and future directions
  • Acknowledgments
  • References
  • Chapter 3.2 - Calicivirus Replication and Reverse Genetics
  • 1 - Calicivirus genome organization
  • 2 - Calicivirus model systems
  • 3 - The calicivirus life cycle
  • 4 - Calicivirus reverse genetics
  • 4.1 - Infectious Calicivirus RNA
  • 4.2 - Strategies for Recombinant Calicivirus Recovery
  • 4.2.1 - Feline Calicivirus (FCV)
  • 4.2.2 - Porcine Enteric Calicivirus (PEC)
  • 4.2.3 - Rabbit Hemorrhagic Disease Virus (RHDV)
  • 4.2.4 - Tulane Virus (TV)
  • 4.2.5 - Murine Noroviruses (MNV)
  • 4.2.6 - Human Norovirus (HuNoV)
  • 5 - Summary and outlook
  • References
  • Chapter 3.3 - Human Norovirus Receptors
  • 1 - Introduction
  • 2 - Human norovirus binds to histo-blood group antigens
  • 3 - Binding of norovirus to HBGAs is involved in infection
  • 4 - The complex and genotype-dependent HBGA specificities preclude a perfect match between infection and the ABO and secret...
  • 5 - Additional binding specificities of human norovirus
  • 6 - Glycan-binding properties of animal noroviruses
  • 7 - Glycosphingolipids as receptors for norovirus
  • 8 - Cellular uptake of norovirus
  • References
  • Chapter 3.4 - Animal Models of Norovirus Infection
  • 1 - Introduction
  • 2 - Animal models of HuNoV infection
  • 2.1 - Mice as an Animal Model
  • 2.2 - Chimpanzees as an Animal Model
  • 2.3 - Macaques as an Animal Model
  • 2.4 - Gnotobiotic Pigs and Calves as Animal Models
  • 3 - Human Norovirus surrogates as animal models
  • 3.1 - The Porcine Sapovirus Model
  • 3.2 - The Mouse Norovirus Model
  • 3.3 - The Recovirus Model
  • 4 - Conclusions
  • Acknowledgments
  • References
  • Chapter 3.5 - Molecular Epidemiology and Evolution of Noroviruses
  • 1 - Introduction
  • 2 - Classification and nomenclature of the Noroviruses
  • 2.1 - Genus Norovirus in the Family Caliciviridae
  • 2.2 - Norovirus Genogroups and Genotypes
  • 2.2.1 - ORF1
  • 2.2.2 - ORF2
  • 2.2.3 - ORF3 (and ORF4)
  • 2.2.4 - Genotyping Methods
  • 2.2.5 - Genotyping System Based on the Viral Capsid
  • 2.2.6 - Genotyping System Based on the Viral RNA-Dependent RNA Polymerase
  • 2.2.7 - Norovirus Online Genotyping Tool
  • 3 - Mechanisms for the generation of norovirus diversity
  • 3.1 - Genetic Drift
  • 3.2 - Transmission Bottlenecks
  • 3.3 - Recombination
  • 4 - Molecular epidemiology and transmission
  • 4.1 - Distribution of Norovirus Genotypes
  • 4.2 - Diversity and Norovirus Vaccine Development
  • 4.3 - Transmission and Site of Replication
  • 5 - Summary and future directions
  • Acknowledgments
  • References
  • Chapter 3.6 - Norovirus Vaccine Development
  • 1 - Background
  • 2 - Immune correlates
  • 3 - Preclinical studies with Norovirus vaccine candidates
  • 4 - Clinical studies
  • 5 - Summary and challenges
  • References
  • Chapter 4.1 - Studies of Astrovirus Structure-Function Relationships
  • 1 - Introduction
  • 2 - Astrovirus virion structure and maturation
  • 2.1 - Crystal Structure of the Human Astrovirus Spike
  • 2.2 - Crystal Structure of the Turkey Astrovirus Spike
  • 2.3 - Putative Receptor Binding Sites
  • 3 - Astrovirus capsid studies and disease
  • 3.1 - Astrovirus Disease
  • 3.2 - Astrovirus-Induced Barrier Permeability by Disruption of Tight Junctions is Mediated by the Capsid Protein
  • 3.3 - Astrovirus Infection and Cell Death
  • 3.4 - Astrovirus Suppression of Complement
  • 4 - Summary and future studies
  • References
  • Chapter 4.2 - Astrovirus Replication and Reverse Genetics
  • 1 - Introduction
  • 2 - Genome structure and organization
  • 3 - Virus entry
  • 4 - Genome transcription and replication
  • 5 - Synthesis of viral proteins
  • 6 - Virus replication sites
  • 7 - Assembly and exit of viral particles
  • 8 - Reverse genetics
  • 9 - Perspectives
  • Abbreviations used
  • References
  • Chapter 4.3 - Molecular Epidemiology of Astroviruses
  • 1 - Introduction
  • 2 - Classification
  • 3 - Detection and diagnosis
  • 4 - Molecular epidemiology
  • 4.1 - Human Astroviruses
  • 4.1.1 - Classic Human Astroviruses (HAstV)
  • 4.1.2 - MLB Astroviruses
  • 4.1.3 - VA Astroviruses
  • 4.2 - Animal Astroviruses
  • 4.2.1 - Ovine Astroviruses (OAstV)
  • 4.2.2 - Bovine Astroviruses (BoAstV)
  • 4.2.3 - Porcine Astroviruses (PoAstV)
  • 4.2.4 - Canine Astroviruses (CaAstV)
  • 4.2.5 - Feline Astroviruses (FeAstV)
  • 4.2.6 - Mink Astroviruses (MiAstV)
  • 4.2.7 - Bat Astroviruses (BatAstV)
  • 4.2.8 - Rabbit Astroviruses (RaAstV)
  • 4.2.9 - Duck Astroviruses (DAstV)
  • 4.2.10 - Turkey Astroviruses (TAstV)
  • 4.2.11 - Avian Nephritis Viruses (ANV)
  • 4.2.12 - Chicken Astroviruses (CAstV)
  • 5 - Recombination and interspecies transmission
  • 6 - Waterborne and foodborne Disease outbreaks
  • 7 - Conclusions and future perspectives
  • References
  • Chapter 5.1 - Enteric Viral Metagenomics
  • 1 - Background
  • 2 - Metagenomics for enteric viruses
  • 3 - Methods for viral metagenomics
  • 4 - Virus interaction with gut microbiota
  • 5 - Future directions
  • References
  • Chapter 5.2 - Interactions Between Enteric Viruses and the Gut Microbiota
  • 1 - Introduction
  • 2 - The gut microbiota and the host-a symbiotic relationship
  • 3 - The influence of the microbiota on specific enteric viral infections
  • 3.1 - Poliovirus
  • 3.2 - Reovirus and Rotavirus
  • 3.3 - Noroviruses
  • 3.4 - Mouse Mammary Tumor Virus
  • 4 - Concluding Remarks
  • References
  • Index
  • Back cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

119,00 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok