Modern Techniques for Food Authentication

 
 
Elsevier (Verlag)
  • 2. Auflage
  • |
  • erschienen am 3. August 2018
  • |
  • 805 Seiten
 
E-Book | ePUB mit Adobe-DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-0-12-814265-3 (ISBN)
 

Modern Techniques for Food Authentication, Second Edition presents a comprehensive review of the novel techniques available to authenticate food products, including various spectroscopic technologies, methods based on isotopic analysis and chromatography, and other techniques based on DNA, enzymatic analysis and electrophoresis. This new edition pinpoints research and development trends for those working in research, development and operations in the food industry, giving them readily accessible information on modern food authentication techniques to ensure a safe and authentic food supply. It will also serve as an essential reference source to undergraduate and postgraduate students, and for researchers in universities and research institutions.

  • Presents emerging imaging techniques that have proven to be powerful, non-destructive tools for food authentication
  • Includes applications of hyperspectral imaging to reflect the current trend of developments in food imaging technology for each topic area
  • Provides pixel level visualization techniques needed for fast and effective food sample testing
  • Contains two new chapters on Imaging Spectroscopic Techniques
  • Englisch
  • San Diego
  • |
  • USA
  • 70,52 MB
978-0-12-814265-3 (9780128142653)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Modern Techniques for Food Authentication
  • Copyright
  • Contents
  • Contributors
  • About the Editor
  • Second Edition Preface
  • List of Abbreviations
  • Chapter 1: Introduction to Food Authentication
  • 1. Introduction
  • 2. Modern Techniques in Food Authentication
  • 2.1. Chromatographic Techniques
  • 2.1.1. Gas Chromatography
  • 2.1.2. High-Performance Liquid Chromatography
  • Amino Acids and Organic Acids
  • Phenolic Compounds
  • Lipid-Soluble Analytes
  • 2.2. Spectroscopic Techniques
  • 2.3. Stable Isotope Analysis
  • 2.3.1. Isotope Ratio Mass Spectrometry
  • 2.3.2. Site-Specific Natural Isotope Fractionation NMR Spectroscopy
  • 2.4. Metabolomics Studies in Food Authentication
  • 2.5. Enzymes in Food Authentication
  • 2.6. Proteomics and DNA-Based Methods in Food Authentication
  • 3. Conclusions
  • References
  • Chapter 2: Spectroscopic Technique: Mid-Infrared (MIR) and Fourier Transform Mid-Infrared (FT-MIR) Spectroscopies
  • 1. Introduction
  • 2. Theory and Principles
  • 3. Instrumentation
  • 3.1. Sample Presentation
  • 3.2. New Developments
  • 4. Applications of MIR and FT-MIR in Foods and Drinks
  • 4.1. Dairy Products
  • 4.1.1. Determination of the Quality of Dairy Products
  • 4.1.2. Detection of the Adulteration and/or Authentication
  • 4.1.3. Prediction of Some Physicochemical and Textural Parameters
  • 4.2. Meat and Meat Products
  • 4.3. Cereals and Cereal Products
  • 4.4. Edible Oils
  • 4.5. Sugar and Honey
  • 4.6. Fruits and Vegetables
  • 4.7. Coffee
  • 4.8. Identification of Bacteria of Food Interest
  • 5. Conclusions
  • References
  • Further Reading
  • Chapter 3: Spectroscopic Technique: Near Infrared (NIR) Spectroscopy
  • 1. Introduction
  • 2. Theory and Principles
  • 3. Instrumentation
  • 3.1. Radiation Source
  • 3.2. Wavelength Selectors
  • 3.3. Sample Presentation Modes
  • 3.3.1. Transmittance and Diffuse Transmittance Modes
  • 3.3.2. Diffuse Reflectance Mode
  • 3.3.3. Transflectance Mode
  • 3.3.4. Interactance Mode
  • 3.4. Detectors
  • 4. Chemometrics
  • 4.1. Preprocessing of Spectral Data
  • 4.1.1. Smoothing
  • 4.1.2. Derivatives
  • 4.1.3. Normalization
  • 4.1.4. Multiplicative Scatter Correction
  • 4.1.5. SNV and De-trending
  • 4.2. Quantitative Chemometric Techniques
  • 4.3. Qualitative Chemometric Techniques
  • 4.3.1. Unsupervised Methods
  • Principal Component Analysis
  • Hierarchical Cluster Analysis
  • 4.3.2. Supervised Methods
  • Soft Independent Modeling of Class Analogy
  • PLS Discriminant Analysis
  • Linear Discriminant Analysis
  • Factorial Discriminant Analysis
  • k-Nearest Neighbors
  • Support Vector Machine
  • 4.4. Validation
  • 5. Advantages and Disadvantages
  • 6. Applications in Food and Beverage Authenticity
  • 6.1. Cereals and Cereal Products
  • 6.2. Coffee
  • 6.3. Fruit and Fruit Products
  • 6.4. Honey
  • 6.5. Meat and Meat Products
  • 6.6. Milk and Dairy Products
  • 6.7. Tea
  • 6.8. Vegetable Oils
  • 6.9. Wine and Distilled Alcoholic Beverages
  • 7. Conclusions
  • References
  • Further Reading
  • Chapter 4: Spectroscopic Technique: Fourier Transform (FT) Near-Infrared Spectroscopy (NIR) and Microscopy (NIRM)
  • 1. Introduction
  • 2. Theory and Instrumentation
  • 2.1. NIR: Few Elements of Theory
  • 2.2. FT-NIR: Instrumentation Features
  • 3. New Trends in Chemometrics as Applied to NIR Spectroscopic Data
  • 3.1. ANNs for Authentication Using Spectroscopic Data
  • 3.2. SVMs for Authentication Using Spectroscopic Data
  • 4. Authentication, Fraud, and Contaminant Detection by FT-NIR
  • 4.1. Edible Oils and Fats
  • 4.1.1. The Case of Olive Oil
  • 4.1.2. Other Edible Oils
  • 4.1.3. Frying Oils
  • 4.2. Cheese
  • 4.2.1. Geographic Origin and Authentication of Cheese
  • 4.2.2. Discrimination of the Age of Cheese
  • 4.3. Alcoholic Beverages
  • 4.3.1. Discrimination and Authentication of Alcoholic Beverages
  • 4.3.2. Discrimination of Marked Age and Vintage Year of Alcoholic Beverages
  • 4.3.3. Geographic Origin of Rice Wines
  • 4.4. Other Food Products
  • 4.4.1. Geographic Origin of Saffron
  • 4.4.2. Discrimination of Botanical Origin of Honey
  • 4.4.3. Discrimination of Pear Varieties
  • 4.4.4. Characterization, Adulteration, and Discrimination of Tea Categories
  • 5. Authentication by FT-NIRM
  • 6. Conclusions
  • References
  • Further Reading
  • Chapter 5: Spectroscopic Technique: Raman Spectroscopy
  • 1. Introduction
  • 2. Instrumentation
  • 2.1. Dispersive and Fourier Transform Spectrometer Systems
  • 2.2. Raman Microscopy
  • 2.3. SERS Techniques
  • 3. Applications in Agricultural and Food Sector
  • 3.1. Agricultural Crops
  • 3.1.1. Vegetable Oils and Fats
  • 3.1.2. Proteins and Carbohydrates
  • 3.2. Horticultural Crops
  • 3.2.1. Carotenoids
  • 3.2.2. Other Natural Pigments
  • 3.2.3. Polyacetylenes
  • 3.2.4. Essential Oils
  • 3.2.5. Miscellaneous Plant Substances
  • 3.3. Meat and Animal Fats
  • 3.4. Milk and Dairy Products
  • 3.5. Beverages
  • 3.6. Honey
  • 3.7. Micro-Raman Measurements
  • 3.8. Pesticides and Microorganisms
  • 4. Conclusions
  • References
  • Further Reading
  • Chapter 6: Spectroscopic Technique: Fourier Transform Raman (FT-Raman) Spectroscopy
  • 1. Introduction
  • 2. Fundamentals of Raman Spectroscopy
  • 3. Raman Band Intensities and Basis of Qualitative Aspect of Raman Spectroscopy
  • 4. FT-Raman Instrumentation
  • 5. Applications of Raman Spectroscopy
  • 5.1. Food Analysis
  • 5.2. Authentication of Fats and Oils
  • 5.3. Authentication Carbohydrate-Based Food Systems
  • 5.4. Authentication of Protein-Based Food Systems
  • 5.5. Process Monitoring and Food Texture Imaging
  • 5.6. Assessment of Food Adulteration
  • 6. Conclusions
  • References
  • Further Reading
  • Chapter 7: Spectroscopic Technique: Fluorescence and Ultraviolet-Visible (UV-Vis) Spectroscopies
  • 1. Introduction
  • 2. Fluorescence Spectroscopy
  • 2.1. Definition
  • 2.2. Quantum Yield (Efficiency)
  • 2.3. Excitation and Emission Spectra
  • 2.3.1. Excitation Spectrum
  • 2.3.2. Emission Spectrum
  • 2.4. Stoke's Shift
  • 2.5. Factors Affecting Fluorescence Intensity
  • 2.5.1. Quenching
  • 2.5.2. Concentration and Inner Filter Effect
  • 2.5.3. Molecular Environment
  • 2.5.4. Scatter
  • 3. Instrumentation
  • 4. Applications of Fluorescence in Foods and Drinks
  • 4.1. Dairy Products
  • 4.1.1. FFFS for the Authentication of Milk
  • 4.1.2. FFFS for the Authentication of Cheeses
  • 4.2. Meat and Meat Products
  • 4.3. Fish and Fish Products
  • 4.4. Edible Oils
  • 4.5. Cereals and Cereal Products
  • 4.6. Sugar and Honey
  • 4.7. Fruit and Vegetables
  • 4.8. Identification of Bacteria of Agro-Alimentary Interest
  • 5. Advantages and Disadvantages of Fluorescence Spectroscopy
  • 5.1. Advantages of Fluorescence
  • 5.2. Disadvantages of Fluorescence
  • 6. Conclusions
  • References
  • Further Reading
  • Chapter 8: Imaging Spectroscopic Technique: Hyperspectral Imaging
  • 1. Introduction
  • 2. Theory and Principles
  • 3. Instrumentation
  • 3.1. Image Sensing Modes
  • 3.2. Acquisition of Hyperspectral Images
  • 3.3. Components of Pushbroom Instruments
  • 3.3.1. Illumination Unit
  • 3.3.2. Imaging Spectrographs
  • 3.4. System Calibration and Image Correction
  • 4. Hyperspectral Data Analysis
  • 4.1. Overview of Data Analysis
  • 4.2. Hypercube Preprocessing
  • 4.2.1. ROI Selection
  • 4.2.2. Image Cleaning
  • 4.2.3. Spectral Preprocessing
  • 4.3. Exploratory Analysis
  • 4.4. Resolution-Based Methods
  • 4.5. Classification Modeling
  • 4.6. Regression Modeling
  • 4.7. Dimension Reduction
  • 5. Applications in Food Authenticity
  • 5.1. Meat and Meat Products
  • 5.1.1. Grading and Categorization
  • 5.1.2. Freshness Detection
  • 5.1.3. Detection of Adulteration
  • 5.2. Fish and Other Seafood
  • 5.2.1. Grading and Categorization
  • 5.2.2. Freshness Detection
  • 5.2.3. Detection of Adulteration
  • 5.3. Grain
  • 5.4. Milk and Dairy Products
  • 5.5. Others
  • 6. Conclusions
  • References
  • Chapter 9: Imaging Spectroscopic Technique: Raman Chemical Imaging
  • 1. Introduction
  • 2. Fundamentals of Raman Chemical Imaging
  • 2.1. Basic Principles
  • 2.2. Advanced Raman-Based Imaging Methods
  • 2.2.1. CARS Imaging
  • 2.2.2. SRS Imaging
  • 2.2.3. SRES Imaging
  • 2.2.4. TERS Imaging
  • 2.3. Data Processing
  • 2.3.1. Preprocessing
  • 2.3.2. Raman Image Exploration
  • 3. Applications of Raman Chemical Imaging for Food Authentication
  • 3.1. Dairy Products
  • 3.2. Cereal and Nut Products
  • 3.3. Meat and Fat Products
  • 3.4. Fruits and Vegetables
  • 3.5. Plant Cells
  • 3.6. Microorganisms
  • 3.7. Other Applications
  • 4. Advantages and Disadvantages
  • 5. Conclusions
  • References
  • Chapter 10: Isotopic-Spectroscopic Technique: Site-Specific Nuclear Isotopic Fractionation Studied by Nuclear Magnetic Re ...
  • 1. Introduction
  • 2. Natural Isotope Fractionation
  • 3. Determining Site-Specific Ratios by Nuclear Magnetic Resonance (NMR)
  • 4. 2H NMR for Quantitative Determinations of Site-Specific Ratios
  • 4.1. Choice of Isotopic Probe for SNIF-NMR Analysis
  • 4.2. Preparation of Sample for NMR Measurement
  • 4.3. NMR Instrument
  • 4.4. Determination of Isotope Parameters
  • 4.4.1. Examples for Detection of Adulteration
  • 4.4.2. Adulteration of Fruit Juice
  • 4.4.3. Sample Treatment: The SNIF-NMR Concept
  • 4.4.4. Calculations
  • 4.5. Adulteration of Wine
  • 4.6. Adulteration of Vinegar
  • 4.7. Adulteration of Honey
  • 4.8. Adulteration of Organic Acid
  • 4.9. Adulteration of Nicotine
  • 4.10. Adulteration of Olive Oil
  • 5. Conclusions
  • References
  • Further Reading
  • Chapter 11: Isotopic-Spectroscopic Technique: Stable Isotope-Ratio Mass Spectrometry (IRMS)
  • 1. Introduction
  • 2. Theory and Principles
  • 2.1. Oxygen and Hydrogen Isotopes
  • 2.2. Carbon Isotopes
  • 2.3. Nitrogen Isotopes
  • 2.4. Sulfur Isotopes
  • 3. Equipment and Instruments
  • 3.1. Isotope Ratio Mass Spectrometer
  • 3.1.1. Ionization
  • 3.1.2. Mass Separation
  • 3.1.3. Multiple Ion Collection
  • 3.1.4. Universal Triple Collector
  • 3.1.5. Hydrogen Collector
  • 3.1.6. Data Acquisition and Processing
  • 3.2. Sample Preparation Devices and Interfaces
  • 3.2.1. Viscous Flow Isotope Ratio MS
  • 3.2.2. Semiheavy water (HDO) Water Equilibration
  • 3.2.3. Continuous Flow Isotope Ratio Mass Spectrometry
  • 3.3. Continuous Flow Interface Technology
  • 3.3.1. Open Split
  • 3.3.2. Dilution
  • 3.3.3. Referencing
  • 3.3.4. Elemental Analyzer-Isotope Ratio Mass Spectrometry (EA-IRMS)
  • 3.3.5. Combustion for 13C, 15N, and 34S
  • 3.3.6. Quantitative High Temperature Conversion for 2H and 18O
  • 3.3.7. Gas Chromatography-Isotope Ratio MS (GC-IRMS)
  • 3.3.8. GC-Combustion for d13C and d15N Determination
  • 3.3.9. High Temperature Conversion for d2H and d18O Determination
  • 3.3.10. Liquid Chromatography-Isotope Ratio MS (LC-IRMS)
  • 3.3.11. Multiple Loop Injection-Isotope Ratio MS
  • 4. Recent Applications in Food Authenticity
  • 4.1. Application to Trace the Geographical Origin of Food
  • 4.1.1. Geographical Origin of Meat
  • 4.1.2. Geographical Origin of Milk
  • 4.1.3. Geographical Origin of Butter
  • 4.1.4. Geographical Origin of Cheese
  • 4.1.5. Geographical Origin of Asparagus
  • 4.1.6. Geographical Origin of Wine
  • 4.1.7. Geographical Origin of Pistachios
  • 4.1.8. Geographical Origin of Wheat
  • 4.1.9. Geographical Origin of Rice
  • 4.1.10. Geographical Origin of Pears
  • 4.1.11. Geographical Origin of Green Coffee
  • 4.2. Application to Distinguish Natural From Synthetic Molecules
  • 4.2.1. Natural and Synthetic Pure Aromas Molecules
  • 4.2.2. Differentiation Between Betanins From Pitaya And From Red Beet
  • 4.2.3. Identification of Natural Versus Synthetic Caffeine
  • 4.2.4. Identification of Natural Versus Synthetic Tartaric Acid
  • 4.2.5. Characterization of the Sources of CO2 in Carbonated Beverages
  • 4.3. Application to Distinguish Agricultural or Farming Practices
  • 4.3.1. Application to Distinguish Organic Versus Conventional Produces
  • 4.3.2. Application to Distinguish ``Farmed´´ From ``Wild´´
  • 4.4. Application to Detect Adulteration
  • 4.4.1. Fraudulent Water Addition
  • 4.4.2. Fraudulent Sugar Addition
  • Sugar Addition to Juices and Concentrates
  • Sugar Addition to Wines and Musts
  • Sugar Addition to Honey
  • 4.4.3. Detection of Adulterated Royal Jelly
  • 4.4.4. Detection of Glycerol Addition in Wines
  • 4.4.5. Testing of Adulteration of Fats and Oils
  • 4.4.6. Testing of Plant or Animal Origin of Protein in Food
  • 4.4.7. Detection of Added Citric Acid in Fruit Juices
  • 4.4.8. Detection of Reconstituted Versus Raw Milk
  • 4.5. Application to Trace the Botanic Origin
  • 4.5.1. Detection of Botanic Origin of Fermentative Ethanol in Spirits
  • 4.5.2. Botanical Origin of Beer Ingredients
  • 4.5.3. Botanical Origin Monofloral Honeys
  • 4.5.4. Botanical Origin of Cinnamaldehyde
  • 5. Strengths and Limitations
  • 5.1. Practicability
  • 5.2. Use of Chemometric Methods
  • 6. Applicability of Different Isotope Fingerprints to Authenticity and Geographical Origin
  • 6.1. Applications for Organic Agriculture
  • 6.2. Application for the Detection of Food and Beverage Adulterations
  • 7. Conclusions
  • Definitions
  • References
  • Further Reading
  • Chapter 12: Chromatographic Technique: Gas Chromatography (GC)
  • 1. Introduction
  • 2. Theory and Fundamentals
  • 2.1. Chromatographic Flow
  • 2.2. Retention Parameters
  • 2.3. Migration of the Solutes Through the Column
  • 2.4. Efficiency and Resolution
  • 2.5. The Mobile Phase
  • 2.6. The Stationary Phase
  • 2.7. Columns
  • 2.7.1. Effect of Column Dimensions on the Separation
  • 2.7.2. Operating Conditions
  • 3. Instrumentation
  • 3.1. Injection Systems
  • 3.2. Detectors
  • 3.3. Multidimensional GC
  • 4. Applications
  • 4.1. Oils and Fats
  • 4.1.1. Fatty Acids
  • 4.1.2. Triacylglycerols
  • 4.1.3. Sterols
  • 4.1.4. Other Minor Compounds
  • 4.1.5. Volatiles
  • 4.2. Dairy Products
  • 4.2.1. Foreign Fat in Milk Fat
  • FAMEs
  • TAGs
  • Sterols
  • Volatiles
  • 4.2.2. Differentiation of Organic Milk and Conventional Milk
  • 4.3. Spices and Flavors
  • 4.4. Honey
  • 4.4.1. Volatiles
  • 4.4.2. Carbohydrates
  • 4.5. Fruit Juices
  • 4.5.1. Addition of Sweeteners
  • 4.5.2. Authentication of a Declared Fruit Juice
  • 4.5.3. Addition of Synthetic Aromas
  • 4.5.4. Authentication of Organic Juices
  • 4.6. Coffee
  • 4.6.1. Fraud in Coffee Varieties
  • 4.6.2. Authentication of Geographical Origin
  • 4.6.3. Adulteration with Cheaper Products
  • 4.6.4. Authentication of Palm Civet Coffee
  • 4.7. Wines
  • 5. Conclusions
  • Acknowledgments
  • References
  • Further Reading
  • Chapter 13: Chromatographic Technique: High-Performance Liquid Chromatography (HPLC)
  • 1. Introduction
  • 2. Principle of Liquid Chromatography
  • 2.1. Principles of Chromatographic Separation
  • 2.2. Classification of Liquid Chromatography Technique
  • 3. Instrumentation
  • 3.1. Solvent Delivery System
  • 3.2. Sample Injection System
  • 3.3. Column
  • 3.4. Detection System
  • 4. Sample Preparation
  • 5. Applications
  • 5.1. Authenticity of Fruit Juices
  • 5.1.1. Sugars Analysis
  • 5.1.2. Organic Acids Analysis
  • 5.1.3. Phenolic Compounds Analysis
  • 5.1.4. Carotenoids Analysis
  • 5.2. Authenticity of Wines
  • 5.3. Authenticity of Honey
  • 5.4. Authenticity of Oils, Butter, and Coffee
  • 5.4.1. Vegetable Oils
  • 5.4.2. Cocoa Butter and Coffee
  • 5.5. Authenticity of Cheese and Milk
  • 6. Conclusions
  • References
  • Further Reading
  • Chapter 14: DNA-Based Technique: Polymerase Chain Reaction (PCR)
  • 1. Introduction
  • 2. Stability of DNA in Foods
  • 3. Methods of DNA Extraction From Foods
  • 4. Molecular Techniques Used to Discriminate Between Similar Species and Strains
  • 4.1. Random Amplified Polymorphic DNA (RAPD)
  • 4.2. Real-Time PCR (RT-PCR)
  • 4.3. Nested PCR Assays
  • 4.4. Quantitative Competitive PCR (QC-PCR) for Determining the Percent of a Species Present in a Mixture
  • 4.5. Restriction Fragment Length Polymorphism (RFLP)
  • 4.6. PCR-Single-Strand Conformation Polymorphism (PCR-SSCP)
  • 4.7. Amplified Fragment Length Polymorphism (AFLP)
  • 4.8. Denaturing Gradient Gel Electrophoresis (DGGE)
  • 4.9. PCR-High-Resolution Melting (PCR-HRM)
  • 4.10. Digital PCR (dPCR) Technology
  • 5. Species Specific PCR Assays
  • 5.1. Genetically Modified Organisms (GMOs)
  • 5.1.1. Genetic and Biological Characteristics of GMOs
  • 5.1.2. Molecular Methods for Detection of GMOs
  • 5.1.3. The Transgenic Cassette
  • 5.1.4. Bt GMOs
  • 5.1.5. EPSPS GMOs
  • 5.1.6. Specificity of PCR-Based GMO Detection Methods
  • 5.1.7. Applications of PCR Methodology for Detection of GMOs
  • 5.1.8. Membrane-Based Detection Systems for GMOs
  • 5.1.9. Microarrays
  • 5.1.10. Peptide Nucleic Acid (PNA) Clamping Inhibition of the PCR
  • 5.1.11. Dip Stick Biosensor
  • 5.2. Non-GMO Grains and Seeds
  • 5.3. Meat Products
  • 5.3.1. Mammals and Amphibians
  • 5.3.2. Avian Species
  • 5.4. Seafood
  • 5.4.1. Shellfish
  • 5.4.2. Cephalopods
  • 5.4.3. Crustaceans
  • 5.4.4. Fish Species
  • 5.5. Milk and Dairy Products
  • 6. Other DNA-Based Techniques
  • 6.1. Loop-Mediated Isothermal Amplification (LAMP)
  • 6.2. Next-Generation Sequencing (NGS)
  • 6.3. DNA Barcoding
  • 7. Conclusions
  • References
  • Further Reading
  • Chapter 15: Immunoanalytical Technique: Enzyme-Linked Immunosorbent Assay (ELISA)
  • 1. Introduction
  • 1.1. Food Traceability and Authentication
  • 1.2. The Immunoassay (ELISA) Approach
  • 2. Recent Applications in Enzyme Immunoassay for Food Authentication
  • 2.1. Meat, Fish, and Related Products
  • 2.2. Milk and Dairy Products
  • 2.3. Other Food Products
  • 2.3.1. Olive Oil
  • 2.3.2. Honey
  • 2.3.3. Wine
  • 2.3.4. Miscellaneous Products
  • 2.4. Genetically Modified Organisms
  • 3. Conclusions
  • References
  • Chapter 16: Electrophoretic Technique: Capillary Zone Electrophoresis
  • 1. Introduction
  • 2. Equipment and Instrumentation Used in CE
  • 3. Theory and Principles of CE
  • 4. Modes of CE
  • 4.1. Free-Solution Capillary Electrophoresis
  • 4.2. Micellar Electrokinetic Chromatography
  • 4.3. Capillary Gel Electrophoresis
  • 4.4. Capillary Isoelectrofocusing
  • 4.5. Capillary Electrochromatography
  • 5. Application of CE to Food Authentication
  • 5.1. DNA Analysis
  • 5.2. Analysis of Proteins
  • 5.3. Analysis of Chiral Compounds
  • 5.4. Analysis of Other Compounds
  • 5.5. CE Microchip Technology in Food Authentication
  • 6. Future Outlooks
  • 7. Conclusions
  • Acknowledgments
  • References
  • Chapter 17: Chemometric Methods in Food Authentication
  • 1. Introduction
  • 2. Data Collection
  • 3. Data Display
  • 4. Process Monitoring and Quality Control
  • 5. Three-Way PCA
  • 6. Discriminant Classification
  • 7. Modeling
  • 8. Calibration
  • 9. Variable Selection
  • 10. Future Trends
  • 11. The Advantages and Disadvantages of Chemometrics
  • 12. Conclusions
  • References
  • Further Reading
  • A. Books
  • B. Web Sites (Tested on December 27, 2017)
  • Chapter 18: Trends in Food Authentication
  • 1. Introduction
  • 2. Emerging Authentication Methods
  • 2.1. Physicochemical/Chemical Fingerprinting Methods
  • 2.1.1. Nuclear Magnetic Resonance/SNIF-NMR
  • 2.1.2. Fourier Transform Infrared Spectroscopy
  • 2.1.3. Near-Infrared
  • 2.1.4. Hyperspectral Imaging
  • 2.1.5. Raman Spectroscopy and Raman Chemical Imaging
  • 2.1.6. High-Performance Liquid Chromatography
  • 2.2. Protein-Based Methods
  • 2.2.1. ELISA
  • 2.2.2. Western Blot
  • 2.2.3. Lateral Flow Strip
  • 2.3. DNA-Based Methods
  • 2.3.1. Microarrays
  • 2.3.2. Southern Blot
  • 2.3.3. Qualitative Polymerase Chain Reaction (PCR)
  • 2.3.4. Quantitative Competitive PCR
  • 2.3.5. Real-Time PCR
  • 2.3.6. Random Amplified Polymorphic DNA
  • 2.4. Enzyme Immunoassays
  • 3. Conclusions
  • References
  • Further Reading
  • Index
  • Back Cover

Dateiformat: ePUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

220,15 €
inkl. 5% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe-DRM
siehe Systemvoraussetzungen
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen