Pesticides in Crop Production

Physiological and Biochemical Action
 
 
Standards Information Network (Verlag)
  • 1. Auflage
  • |
  • erschienen am 10. Februar 2020
  • |
  • 312 Seiten
 
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-1-119-43220-3 (ISBN)
 

A guide to the diversity of pesticides used in modern agricultural practices, and the relevant social and environmental issues

Pesticides in Crop Production offers an important resource that explores pesticide action in plants; pesticide metabolism in soil microbes, plants and animals; bioaccumulation of pesticides and sensitiveness of microbiome towards pesticides. The authors explore pesticide risk assessment, the development of pesticide resistance in pests, microbial remediation of pesticide intoxicated legumes and pesticide toxicity amelioration in plants by plant hormones.

The authors include information on eco-friendly pest management. They review the impact of pesticides on soil microorganism, crops and other plants along with the impact on other organisms like aquatic fauna and terrestrial animals including human beings. The book also contains an analysis of pesticide by GC-MS/MS (Gas Chromatography tandem Mass Spectrometry) a reliable method for the quantification and confirmation of multiclass pesticide residues. This important book:

  • Offers a comprehensive guide to the use of the diversity of pesticides and the pertinent social and environmental issues
  • Explores the impact of pesticides from morphological, anatomical, physiological and biochemical perspectives
  • Shows how pesticides affects soil microorganisms, crops and other plants along with the impact on other organisms like aquatic fauna and animals
  • Critically examines whether chemical pesticides are boon or bane and whether they can be replaced by environmental friendly pesticides

Written for students, researchers and professionals in agriculture, botany, entomology and biotechnology, Pesticides in Crop Production examines the effects of chemical pesticides and the feasibility of using bio-pesticides.



PRABHAT KUMAR SRIVASTAVA is an Assistant Professor of Botany in K. S. Saket Post Graduate College, Ayodhya, Uttar Pradesh, India, an affiliated college of Dr. Ram Manohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India.

VIJAY PRATAP SINGH is an Assistant Professor of Botany in C. M. P. Degree College, a constituent college of University of Allahabad, Prayagraj, Uttar Pradesh, India.

ANITA SINGH is an Assistant Professor of Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, India.

DURGESH KUMAR TRIPATHI is an Assistant Professor in Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India.

SAMIKSHA SINGH is a D. Phil. scholar in the Department of Botany, University of Allahabad, Prayagraj, Uttar Pradesh, India.

SHEO MOHAN PRASAD is a Professor in the Department of Botany, University of Allahabad, Prayagraj, Uttar Pradesh, India.

DEVENDRA KUMAR CHAUHAN is Professor and Head, Department of Botany, University of Allahabad, Prayagraj, Uttar Pradesh, India.

  • Englisch
  • Newark
  • |
  • Großbritannien
John Wiley & Sons Inc
  • Für Beruf und Forschung
  • 3,93 MB
978-1-119-43220-3 (9781119432203)
weitere Ausgaben werden ermittelt
PRABHAT KUMAR SRIVASTAVA is an Assistant Professor of Botany in K. S. Saket Post Graduate College, Ayodhya, Uttar Pradesh, India, an affiliated college of Dr. Ram Manohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India.

VIJAY PRATAP SINGH is an Assistant Professor of Botany in C. M. P. Degree College, a constituent college of University of Allahabad, Prayagraj, Uttar Pradesh, India.

ANITA SINGH is an Assistant Professor of Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, India.

DURGESH KUMAR TRIPATHI is an Assistant Professor in Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India.

SAMIKSHA SINGH is a D. Phil. scholar in the Department of Botany, University of Allahabad, Prayagraj, Uttar Pradesh, India.

SHEO MOHAN PRASAD is a Professor in the Department of Botany, University of Allahabad, Prayagraj, Uttar Pradesh, India.

DEVENDRA KUMAR CHAUHAN is Professor and Head, Department of Botany, University of Allahabad, Prayagraj, Uttar Pradesh, India.
  • Cover
  • Title Page
  • Copyright
  • Contents
  • List of Contributors
  • Preface
  • Chapter 1 Development of Pesticide Resistance in Pests: A Key Challenge to the Crop Protection and Environmental Safety
  • 1.1 Resistance: The Introduction
  • 1.2 Pesticide Resistance: A Global Analysis
  • 1.3 Molecular Genetics and Biochemical Basis of Pesticide Resistance
  • 1.4 Changes in Pesticide Binding Sites
  • 1.5 Nicotinic Acetylcholine Receptors
  • 1.6 GABA Receptors and Other Ligand-gated Chloride Channels
  • 1.7 Voltage-Dependent Sodium Channels
  • 1.8 Insecticidal Microbial Toxins
  • 1.9 Biotransformation
  • 1.10 Acetylcholinesterase
  • 1.11 Esterases
  • 1.12 Carboxylesterases (B-Esterases)
  • 1.13 Cytochrome P450 Monooxygenases
  • 1.14 Glutathione S-Transferases
  • 1.15 Other Resistance Mechanisms
  • References
  • Chapter 2 Fungicide Toxicity to Legumes and Its Microbial Remediation: A Current Perspective
  • 2.1 Introduction
  • 2.2 Nutritional Importance of Legumes
  • 2.3 Fungal Diseases of Legumes: A General Perspective
  • 2.4 Types of Fungicides and Their Mode of Action
  • 2.5 Fungicides Uptake, Metabolism and Their Persistence
  • 2.6 Phytotoxicity of Fungicides to Legumes: A General Perspective
  • 2.7 Impact of Fungicides on Plant Growth
  • 2.8 Effect on Symbiosis and Yield
  • 2.9 Effect on Chlorophyll Content and Photosynthetic Rates
  • 2.10 Fungicide Toxicity to Legume Rhizobium Symbiosis
  • 2.10.1 Effect on Nodulation
  • 2.10.2 Effect of Fungicides on Nitrogenase and Leghaemoglobin
  • 2.10.3 Effect on Dry Biomass
  • 2.11 Microbial Remediation of Fungicide Toxicity
  • 2.12 Concluding Remarks
  • References
  • Chapter 3 Pesticide Metabolism in Plants, Insects, Soil Microbes and Fishes: An Overview
  • 3.1 Introduction
  • 3.2 Metabolism of Pesticides in Plants
  • 3.3 Metabolism of Pesticides in Insects
  • 3.4 Metabolism of Pesticides in Soil Microbes
  • 3.5 Metabolism of Pesticides in Fishes
  • 3.6 Conclusion
  • References
  • Chapter 4 Bioaccumulation of Pesticides and Its Impact on Biological Systems
  • 4.1 Introduction
  • 4.2 Dispersion of Pesticides into the Environment
  • 4.3 Behavior of Pesticides in Soil
  • 4.4 Bioaccumulation and Biomagnifications of Pesticide
  • 4.4.1 Bioaccumulation of Pesticides in Plants
  • 4.4.2 Bioaccumulation of Pesticides in Animals
  • 4.4.3 Bioaccumulation of Pesticides in Human and Toxicity
  • 4.5 Regulatory Activity
  • 4.6 Conclusion and Future Perspectives
  • References
  • Chapter 5 Impact of Pesticide Exposure and Associated Health Effects
  • 5.1 Introduction
  • 5.2 History of Evolution of Pesticides
  • 5.3 Pesticides Regulations
  • 5.4 Impact on Environment
  • 5.5 Impact on Human Health
  • 5.5.1 Pesticide Exposure
  • 5.5.1.1 Pesticide Exposure Routes in Humans
  • 5.5.1.2 Acute Toxicity of Pesticides
  • 5.5.1.3 Neurobehavioral Effects After Acute Toxicity
  • 5.5.1.4 Chronic Toxicity of Pesticides
  • 5.5.1.5 Disruption of Endocrine System
  • 5.5.2 Carcinogenicity
  • 5.5.2.1 Neurological and Neuro-developmental Effects
  • 5.5.2.2 Parkinson's Disease (PD)
  • 5.5.2.3 Immunologic Effects
  • 5.5.2.4 Reproductive Effects
  • 5.5.2.5 Estrogenic Effects of Pesticides on Human Estrogen-Sensitive Cells
  • 5.5.2.6 Diethyl Stilbestrol (DES) Syndrome (Model for Estrogenic Chemicals Exposure in the Environment)
  • 5.5.2.7 Developmental Effects
  • 5.6 Other Health Problems
  • 5.6.1 Eye Problems
  • 5.6.2 Respiratory Problems
  • 5.6.3 Determination of Pollution Potential of Pesticides
  • 5.7 Conclusion
  • References
  • Chapter 6 Microbiome as Sensitive Markers for Risk Assessment of Pesticides
  • 6.1 Introduction
  • 6.2 The Rhizosphere
  • 6.3 Effect of Chemical Pesticides on Soil Microbial Communities
  • 6.4 Effect of Pesticides on Plant Growth Parameters as a Result of Impact on Microbiome
  • 6.5 Impact of Safer Alternatives, Biological Pesticides
  • 6.6 Conclusion and Future Perspectives
  • Acknowledgment
  • References
  • Chapter 7 Arms Race between Insecticide and Insecticide Resistance and Evolution of Insect Management Strategies
  • 7.1 Introduction
  • 7.2 Different Types of Insecticide
  • 7.3 Different Types of Insecticide Resistance
  • 7.3.1 Cross Insecticide Resistance
  • 7.3.2 Multiple Insecticide Resistance
  • 7.3.3 Stable Insecticide Resistance
  • 7.3.4 Unstable Insecticide Resistance
  • 7.4 Reasons for Insecticide Resistance
  • 7.5 Mechanisms of Insecticide Resistance
  • 7.5.1 Alterations in Insecticide Detoxification Capacity
  • 7.5.2 Alteration of Toxin-Receptor Interactions
  • 7.5.3 Alterations in Detoxification Metabolism
  • 7.5.4 Alterations in Insecticide Penetration
  • 7.5.5 Other Potential Mechanisms of Resistance
  • 7.5.5.1 Induced Resistance
  • 7.5.5.2 Behavioral Resistance
  • 7.6 Factors Influencing Insecticide Resistance
  • 7.6.1 Biological and Ecological Factors
  • 7.6.2 Genetic Factors
  • 7.6.3 Operational Factors
  • 7.7 Managing Pesticide Resistance
  • 7.7.1 Insecticide Resistance Database
  • 7.7.2 Chemical Use Strategies for Resistance Management
  • 7.7.2.1 Management by Moderation
  • 7.7.2.2 Management by Multiple Attacks
  • 7.7.2.3 Management by Saturation
  • 7.7.3 Reactive Resistance Management
  • 7.7.4 Proactive Resistance Management
  • 7.7.5 Resistance Management as a Component of IPM
  • 7.8 Technical Strategies to Combat Insecticide Resistance
  • 7.8.1 Searching and Characterizing New and Novel Insecticide
  • 7.8.2 Amending Biocontrol
  • 7.8.3 Exploring Novel Insect Pest Resistant Varieties
  • 7.8.3.1 Plant Immunity and Insect Resistance
  • 7.8.4 Combining Known Insecticides in Appropriate Proportion
  • 7.8.5 Modifying Known Insecticidal Toxins
  • 7.9 Future Perspective
  • Acknowledgments
  • Conflict of Interest
  • References
  • Chapter 8 Agricultural Herbicides and Fungi in Soil Exposed to Herbicides
  • 8.1 Introduction
  • 8.2 General Aspects of Main Herbicides
  • 8.2.1 Clodinafop Propargyl
  • 8.2.2 Toxicity of CF
  • 8.2.3 2,4-Dichlorophenoxyacetic Acid
  • 8.2.3.1 Toxicity of 2,4-D
  • 8.2.4 Glyphosate
  • 8.2.4.1 Toxicity of GP
  • 8.2.5 Atrazine
  • 8.2.5.1 Toxicity of Atrazine
  • 8.2.6 Metolachlor
  • 8.2.6.1 Toxicity of Metolachlor
  • 8.2.7 Diuron
  • 8.2.7.1 Toxicity of Diuron
  • 8.2.8 Imazapyr
  • 8.2.8.1 Toxicity of Imazapyr
  • 8.2.9 Pendimethalin
  • 8.2.9.1 Toxicity of Pendimethalin
  • 8.2.10 Paraquat
  • 8.2.10.1 Toxicity of PQ
  • 8.3 Biodegradation of Most-Used Herbicides by Fungi
  • 8.3.1 2,4-D Degradation
  • 8.3.2 Atrazine Degradation
  • 8.3.3 Metolachlor Degradation
  • 8.4 Effect of Herbicides on Fungi
  • 8.4.1 Glyphosate
  • 8.4.2 2,4-Dichlorophenoxy Acetic Acid and Others Herbicides
  • 8.5 Effect of Herbicides on Toxicogenic Fungi and Mycotoxins Production
  • 8.6 Effect of Herbicides on Phytopathogen Fungi
  • 8.7 Conclusions
  • References
  • Chapter 9 Pesticides Usage, Uptake and Mode of Action in Plants with Special Emphasis on Photosynthetic Characteristics
  • 9.1 Introduction
  • 9.1.1 Usage and Requirement of Pesticides on Plants
  • 9.1.1.1 Integrated Pest Management (IPM)
  • 9.1.1.2 Cultural Control
  • 9.1.1.3 Mechanical Control
  • 9.1.1.4 Biological Control
  • 9.1.1.5 Genetic Control
  • 9.1.1.6 Chemical Control
  • 9.1.2 Generalized Mode of Action and Uptake of Pesticides in Plants
  • 9.2 Effects of Pesticides on the Physiological Characteristics of the Plants
  • 9.2.1 Chlorophyll Fluorescence Affected by the Pesticides
  • 9.2.2 Pesticides Affect Chlorophyll Content in the Plants
  • 9.2.3 Effect of Pesticides on Photosynthesis
  • 9.2.4 Effects of Pesticides on Stomatal Conductance, Transpiration and Dark Respiration
  • 9.3 Beneficial and Detrimental Effects of Pesticides
  • 9.3.1 Beneficial Effects
  • 9.3.2 Detrimental Effects
  • 9.4 Conclusions
  • Acknowledgments
  • References
  • Chapter 10 Botanical Pesticides for Eco-Friendly Pest Management: Drawbacks and Limitations
  • 10.1 Introduction
  • 10.2 Overview of Botanical Pesticides
  • 10.3 Drawbacks and Limitations
  • 10.4 Quality of Raw Material
  • 10.5 Product Standardization
  • 10.6 Rapid Degradation
  • 10.7 Short Shelf-Life
  • 10.8 Raw Material Availability
  • 10.9 Safety of Botanical Pesticides
  • 10.10 Regulatory Approval
  • 10.11 Future Perspectives
  • 10.12 Conclusions
  • References
  • Chapter 11 Pesticide Interactions with Foodstuffs: Case Study of Apple
  • 11.1 Introduction
  • 11.2 Apple Biology
  • 11.2.1 General Botanical Presentation
  • 11.2.2 Plant Structural Biochemistry
  • 11.2.3 Chemical Composition of the Tissues of the Fruit of Malus domestica Borkh
  • 11.3 Pesticide Inputs
  • 11.3.1 Chemical Composition of Pesticides
  • 11.3.1.1 Active Molecules
  • 11.3.1.2 Surfactants
  • 11.3.1.3 Other Additives
  • 11.3.2 Identification of Pesticides Currently Used in French Apple Orchards
  • 11.4 Pesticide-Fruit Interactions
  • 11.4.1 Epidermis Structure and Function in Apple
  • 11.4.2 Two Diffusion Pathways in the Cuticle
  • 11.4.3 Study of the Interactions Between Pesticides and Cuticle
  • 11.4.3.1 Membrane Transport Mechanism for the Active Molecules of Pesticides
  • 11.4.3.2 Cuticular Membrane Permeability
  • 11.4.3.3 Identification of the Chemical Compounds of the Cuticle Interacting with Pesticides
  • 11.4.4 Identification of Factors Likely to Influence Pesticide-Cuticule Interactions
  • 11.4.4.1 Pesticide Formulations
  • 11.4.4.2 Environmental Conditions
  • 11.4.4.3 Pesticide Molecule Degradation in Plants: New Interactions
  • 11.5 Conclusion and Future Prospects
  • References
  • Chapter 12 Multiresidue Pesticide Analysis in Cabbage and Cauliflower Using Gas Chromatography Tandem Mass Spectrometry (GC-MS/MS)
  • 12.1 Introduction
  • 12.2 Experimental Details
  • 12.2.1 Apparatus
  • 12.2.2 Reagents
  • 12.2.3 Preparation of Reference Standard Solutions
  • 12.2.4 Preparation of Sample
  • 12.2.5 GC- MS/MS Analysis
  • 12.2.6 Validation Study
  • 12.3 Results and Discussion
  • 12.3.1 Optimization of GC Oven Programming
  • 12.3.2 Optimization of MS/MS
  • 12.3.3 QuEChERS Procedure for Extraction
  • 12.3.4 Recovery Experiments of Spiked Samples
  • 12.3.5 Method Performance
  • 12.4 Applicability of the Developed Method
  • 12.4.1 Sampling
  • 12.5 Conclusion
  • Acknowledgments
  • References
  • Chapter 13 Pesticide Toxicity Amelioration in Plants by Plant Hormones
  • 13.1 Introduction
  • 13.2 Physico-Chemical Methods
  • 13.2.1 Chemical Detoxification and Disposal Methods
  • 13.2.2 Physical Detoxification and Disposal Methods
  • 13.3 Enzymatic Methods
  • 13.3.1 Oxidoreductases
  • 13.3.2 Hydrolases
  • 13.3.3 Lyases
  • 13.4 Plant Growth Regulators
  • 13.4.1 Auxins
  • 13.4.2 Abscisic Acid
  • 13.4.3 Brassinosteroids
  • 13.4.4 Salicylic Acid
  • 13.4.5 Jasmonic Acid
  • 13.4.6 Polyphenols
  • 13.5 Conclusion
  • References
  • Chapter 14 Transgenic Strategies to Develop Resistant Plant Against the Pathogen and Pest
  • 14.1 Introduction
  • 14.2 Techniques Used for Transgenic Plant Development
  • 14.3 Transgenic Plants Developed Against Pathogens and Pests
  • 14.3.1 Virus
  • 14.3.2 Bacteria
  • 14.3.3 Fungi
  • 14.3.4 Nematodes
  • 14.3.5 Insects
  • 14.3.6 Parasitic Weeds
  • 14.4 Regulation of Insecticidal Gene Expression
  • 14.5 Advantages
  • 14.6 Disadvantages
  • 14.7 Future Strategies
  • Acknowledgments
  • References
  • Index
  • EULA

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

152,99 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen