Material-Tissue Interfacial Phenomena

Contributions from Dental and Craniofacial Reconstructions
 
 
Woodhead Publishing
  • 1. Auflage
  • |
  • erschienen am 30. September 2016
  • |
  • 382 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-08-100341-1 (ISBN)
 

Material-Tissue Interfacial Phenomena: Contributions from Dental and Craniofacial Reconstructions explores the material/tissue interfacial phenomena using dental and craniofacial reconstructions as a model system. As the mouth is a particularly caustic environment, the synthetic and/or bio-enabled materials used to repair damaged tissues and restore form, function, and esthetics to oral structures must resist a variety of physical, chemical, and mechanical challenges.

These challenges are magnified at the interface between dissimilar structures such as the tooth/material interface. Interfacial reactions at the atomic, molecular, and nano-scales initiate the failure of materials used to repair, restore, and reconstruct dental and craniofacial tissues.

Understanding the phenomena that lead to failure at the interface between dissimilar structures, such as synthetic materials and biologic tissues, is confounded by a variety of factors that are thoroughly discussed in this comprehensive book.


  • Provides a specific focus on the oral environment
  • Combines clinical views and basic science into a useful reference book
  • Presents comprehensive coverage of material-interfacial phenomena within the oral environment
  • Englisch
  • Cambridge
Elsevier Science
  • 10,05 MB
978-0-08-100341-1 (9780081003411)
0081003412 (0081003412)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Material-Tissue Interfacial Phenomena
  • Related titles
  • Material-Tissue Interfacial Phenomena : Contributions from Dental and Craniofacial Reconstructions
  • Copyright
  • Contents
  • List of contributors
  • Woodhead Publishing Series in Biomaterials
  • Preface
  • One - Dental and craniofacial reconstructions using biomaterials
  • 1 - Clinical presentation: reconstruction using composite materials
  • 1.1 Historical overview of composite resins and resin components in dentistry
  • 1.2 Bonding substrates: enamel and dentin
  • 1.3 Clinical performance of resin restorations
  • 1.4 Patient selection
  • 1.5 Tooth preparation, form, and function
  • 1.6 Restoration placement techniques
  • 1.7 Clinical challenges and composite restoration failures
  • 1.8 Effects of function, fatigue, and degradation
  • References
  • 2 - Reconstructions using alloys and ceramics
  • 2.1 Introduction
  • 2.2 Overview of materials used in prosthetic restorations
  • 2.2.1 Base metals
  • 2.2.1.1 Nickel-chromium (Ni-Cr)
  • 2.2.1.2 Cobalt-chromium (Cr-Co)
  • 2.2.1.3 Titanium (Ti)
  • 2.2.2 Noble metals
  • 2.2.2.1 Gold-platinum-palladium (Au-Pt-Pd)
  • 2.2.2.2 Gold-palladium-silver (Au-Pd-Ag)
  • 2.2.2.3 Gold-palladium (Au-Pd)
  • 2.2.2.4 Silver-palladium (Ag-Pd)
  • 2.2.3 Ceramics
  • 2.2.3.1 Feldspathic
  • 2.2.3.2 Feldspathic with lithium disilicate
  • 2.2.3.3 Aluminized ceramics
  • 2.2.3.4 Zirconia
  • 2.2.3.5 Yttria-stabilized zirconia
  • 2.2.4 Cements
  • 2.2.4.1 Zinc phosphate
  • 2.2.4.2 Glass ionomer
  • 2.2.4.3 Resin-modified glass ionomer
  • 2.2.4.4 Resin cements
  • 2.3 Clinical indications: philosophical context
  • 2.3.1 Material selection
  • 2.3.2 Metal and ceramic indirect restorations
  • 2.4 Implant-supported restorations
  • 2.4.1 Implant indications: complete edentulous patients
  • 2.4.2 Partially edentulous patients
  • 2.4.3 Multiple teeth
  • 2.4.4 Single tooth
  • 2.4.5 Failures
  • 2.4.6 Implant maintenance
  • 2.5 Dental preparation, adaptation, and cementation of indirect restorations
  • 2.5.1 Preparation
  • 2.5.2 Adaptation
  • 2.5.3 Cementation
  • 2.6 Shape and function of indirect restorations
  • 2.6.1 Conventional
  • 2.6.2 Implant-supported prosthesis
  • 2.6.2.1 Biomechanical considerations
  • 2.6.2.2 Immediate versus late loading
  • 2.6.2.3 Cemented prosthesis versus screwed prostheses
  • 2.6.2.4 Advantages and disadvantages: passive adaptation
  • 2.6.2.5 Reversibility
  • 2.6.2.6 Retention
  • 2.6.2.7 Esthetics
  • 2.7 Clinical challenges and failures
  • 2.7.1 Clinical challenges in dental prosthesis
  • 2.7.2 Selecting materials and techniques
  • 2.7.3 Marginal adaptation
  • 2.7.4 Load to fracture, hardness, soft tissue relationships, biocompatibility
  • 2.7.5 Longevity
  • 2.8 Future directions
  • References
  • 3 - Interfaces in fixed dental prostheses: challenges and opportunities
  • 3.1 Introduction
  • 3.2 Experimental
  • 3.2.1 Fabrication of surface glass-infiltrated zirconia
  • 3.2.2 Determination of the veneer/core interfacial fracture resistance
  • 3.2.3 Determination of the zirconia-resin interfacial fracture resistance
  • 3.2.4 Statistical analysis
  • 3.3 Results
  • 3.3.1 The veneer/core interface
  • 3.3.1.1 Porcelain-veneered zirconia
  • 3.3.1.2 Glass-infiltrated zirconia
  • 3.3.2 The ceramic/cement interface
  • 3.4 Discussion
  • 3.4.1 Fracture resistance of veneer/core diffusion bonding
  • 3.4.2 Fracture resistance of ceramic/resin adhesive bonding
  • 3.5 Conclusions
  • Acknowledgments
  • References
  • Two - Fundamental structure/property characteristics
  • 4 - Fundamentals of the material-tissue interface in dental reconstructions: structure/property relationships and characterization
  • 4.1 Human teeth and the dentinoenamel junction
  • 4.1.1 Dentinoenamel junction: mechanical properties
  • 4.1.2 Dentinoenamel junction: morphologic characteristics
  • 4.2 Materials and systems: natural versus synthetic
  • 4.3 Interfacial engineering and composite restorations
  • 4.3.1 Restorative dentistry: composites and adhesives
  • 4.4 In situ structure/property characterization of the adhesive/dentin interface
  • 4.5 Raman spectroscopy
  • 4.5.1 Raman and adhesive/dentin interface characterization
  • 4.6 Scanning acoustic microscopy
  • 4.6.1 Scanning acoustic microscopy and adhesive/dentin interface characterization
  • 4.7 Fourier transform infrared chemical imaging
  • 4.7.1 Fourier transform infrared imaging and adhesive/dentin interface characterization
  • 4.8 Summary
  • Acknowledgments
  • References
  • 5 - Understanding the mechanical behavior of the material-tissue and material-material interface in dental reconstructions
  • 5.1 Introduction
  • 5.2 The material-tooth interface
  • 5.2.1 The interface of resin and adhesive with dentin and enamel
  • 5.2.2 Interfacial testing methods
  • 5.2.2.1 Tensile and shear
  • 5.2.2.2 Microtensile
  • 5.2.2.3 Fracture mechanics
  • 5.2.2.4 Fatigue
  • 5.3 The resin-ceramic interface-cementation
  • 5.3.1 Resin strengthening of predominantly glassy ceramics
  • 5.3.2 Resin cementation of zirconia polycrystalline ceramics
  • 5.3.3 Adhesion test methods for the resin cement-ceramic interface
  • 5.4 Sintered and soldered joints-bilayer interfaces in dentistry
  • 5.4.1 Internal residual stresses
  • 5.4.2 The zirconia-veneer interface
  • 5.4.3 Mechanical properties of bilayer interfaces
  • 5.4.4 Clinical findings on veneered zirconia restorations
  • 5.4.5 Measurement of residual stresses
  • 5.4.6 Future perspectives
  • Acknowledgments
  • References
  • 6 - Understanding the chemistry and improving the durability of dental resin-dentin bonded interface
  • 6.1 Introduction
  • 6.2 Mechanisms of dentin-resin bonding
  • 6.3 Factors that compromise the durability of dentin-resin bond
  • 6.4 Strategies to improve the dentin-resin bond durability
  • 6.4.1 Modification of hybrid layer with antibacterial bonding system
  • 6.4.1.1 Antibacterial effects
  • 6.4.1.2 The antibacterial mechanism of quaternary ammonium methacrylates
  • 6.4.1.3 Cytotoxicity of quaternary ammonium methacrylates
  • 6.4.1.4 Nanoparticles for antibacterial activity
  • 6.4.2 Improvement of esterase resistance and infiltration of adhesive
  • 6.4.2.1 Development of water-compatible, esterase-resistant adhesives
  • 6.4.2.2 Ethanol-wet bonding technique
  • 6.4.3 Endogenous protease inhibition and collagen biomineralization
  • 6.4.3.1 Inhibition of endogenous proteases
  • 6.4.3.2 Protein cross-linker agents
  • 6.4.3.3 Biomineralization of nude collagen fibrils
  • 6.5 Conclusions
  • Acknowledgments
  • References
  • 7 - Biology of the oral environment and its impact on the stability of dental and craniofacial reconstructions
  • 7.2 Overview of salivary proteins
  • 7.3 Biofilms
  • 7.4 Oral biofilm
  • 7.5 Biofilm-bacteria interaction
  • 7.5.1 Influence on the stability of dental and craniofacial reconstructions
  • 7.6 Biofilm and dental devices
  • 7.7 Introduction to factors known to impact salivary protein-bacteria interactions with reconstructions
  • 7.8 Summary
  • References
  • Three - Characterization of material-tissue interfaces in dental and craniofacial reconstructions
  • 8 - Morphologic and structural analysis of material-tissue interfaces relevant to dental reconstruction
  • 8.1 Introduction
  • 8.2 Structure of enamel and effect on adhesive bonding
  • 8.3 Structure of dentin and effect on adhesive bonding
  • 8.4 Generations of dentin adhesives
  • 8.5 Bonding to cavity walls
  • 8.5.1 Dentin tubule orientation
  • 8.5.2 Regional bond strength to cavity walls
  • 8.6 Phase separation
  • 8.7 Regional bond strength differences in dentin
  • 8.8 Conclusions
  • References
  • 9 - Analyses of material-tissue interfaces by Fourier transform infrared, Raman spectroscopy, and chemometrics
  • 9.1 Brief introduction to vibrational spectroscopic techniques
  • 9.1.1 Infrared spectroscopy
  • 9.1.2 Raman spectroscopy
  • 9.2 Case study 1: in situ monitoring of photopolymerization kinetics using ATR/FTIR spectroscopy
  • 9.3 Case study 2: evaluation of the adhesive/dentin interface under aging using Raman microscopy
  • 9.4 Case study 3: compare and contrast FTIR and Raman imaging analysis
  • 9.4.1 Raman microspectroscopic imaging
  • 9.5 Case study 4: multivariate analysis of spectroscopic data to confirm phase partitioning in methacrylate-based dentin adhesiv...
  • 9.6 Summary
  • References
  • 10 - Material-tissue interfacial phenomena: challenges in mathematical modeling
  • 10.1 Introduction
  • 10.2 Macro- and microscale stress analysis of d-a interface
  • 10.2.1 Macroscale behavior
  • 10.2.2 Microscale behavior
  • 10.3 Rate-dependent microscale stress analysis of d-a interface
  • 10.4 Concluding remarks
  • References
  • Four - Lessons learned: next generation reconstructionsand future opportunities
  • 11 - Dentinoenamel junction: motif for interfacial mechanics of dissimilar materials
  • 11.1 Introduction
  • 11.2 DEJ literature review
  • 11.2.1 Mechanical properties: indentation and fracture
  • 11.2.2 Morphology and composition
  • 11.3 Homotopic experimental characterization of DEJ
  • 11.3.1 Sample preparation
  • 11.3.2 SAM analysis
  • 11.3.3 µ RS analysis
  • 11.3.4 Composite data
  • 11.4 FE modeling of the DEJ region
  • 11.5 Discussion and conclusion
  • References
  • 12 - Chimeric biomolecules: biomolecular recognition-based self-organization at the bio-material interfaces
  • 12.1 Introduction
  • 12.2 Controlled hierarchical interface of mineralized hard tissues
  • 12.3 Functional integration of titanium-based implant materials
  • 12.4 Osteointegration of biofunctionalized implant materials
  • 12.5 Solid-binding peptides as molecular building blocks to control specific interactions at the materials interfaces
  • 12.6 Biofunctionalization of titanium dental implants materials using solid-binding peptides
  • 12.7 Self-organized chimeric peptides toward creating controllable biomaterial interfaces
  • 12.8 Calcium phosphate coating of titanium implants to increase biocompatibility
  • 12.9 Peptides to tune calcium phosphate recognition and mineralization
  • 12.10 Chimeric genetically fused protein as a modular biomolecular device at the interface: from monitoring to biomolecular medi...
  • 12.11 Future prospects
  • Acknowledgments
  • References
  • 13 - Stem cells and dental tissue reconstruction
  • 13.1 Introduction
  • 13.2 Dental stem cells
  • 13.2.1 Key properties of stem cells
  • 13.2.2 Embryonic, induced pluripotent, and multipotent stem cells
  • 13.2.2.1 Human embryonic stem cells
  • 13.2.2.2 Induced pluripotent stem cells
  • 13.2.2.3 Multipotent stem cells
  • 13.2.3 Stem cells in pulp and apical papilla
  • 13.2.3.1 Dental pulp stem cells
  • 13.2.3.2 Stem cells from apical papilla
  • 13.2.3.3 Stem cells from human exfoliated deciduous teeth
  • 13.2.4 Stem cells in periodontal ligament
  • 13.2.4.1 Periodontal ligament stem cells
  • 13.2.5 Stem cells in dental follicle
  • 13.2.5.1 Dental follicle stem/precursor cells
  • 13.2.5.2 Periapical follicle stem cells
  • 13.2.6 Stem cells in inflamed dental tissues
  • 13.2.6.1 Dental pulp stem cells from inflamed pulp
  • 13.2.6.2 Periodontal ligament stem cells from inflamed periodontal ligament
  • 13.2.6.3 Inflamed periapical progenitor cells
  • 13.3 Dental tissue regeneration
  • 13.3.1 Dentin-pulp regeneration
  • 13.3.2 Periodontal tissue regeneration
  • 13.3.3 Whole tooth regeneration
  • 13.3.3.1 Tooth regeneration using tooth germ cells
  • 13.3.3.2 Bioroot engineering
  • 13.3.3.3 Regeneration of root by dental follicle stem cells
  • 13.4 Conclusions and prospects
  • Acknowledgments
  • References
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • Y
  • Z
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

226,10 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok