Introduction to Petroleum Biotechnology

 
 
Elsevier (Verlag)
  • 1. Auflage
  • |
  • erschienen am 11. Dezember 2017
  • |
  • 566 Seiten
 
E-Book | ePUB mit Adobe-DRM | Systemvoraussetzungen
978-0-12-805288-4 (ISBN)
 

Introduction to Petroleum Biotechnology introduces the petroleum engineer to biotechnology, bringing together the various biotechnology methods that are applied to recovery, refining and remediation in the uses of petroleum and petroleum products.

A significant amount of petroleum is undiscoverable in reservoirs today using conventional and secondary methods. This reference explains how microbial enhanced oil recovery is aiding to produce more economical and environmentally-friendly metabolic events that lead to improved oil recovery. Meanwhile, in the downstream side of the industry, petroleum refining operators are facing the highest levels of environmental regulations while struggling to process more of the heavier crude oils since conventional physical and chemical refining techniques may not be applicable to heavier crudes.

This reference proposes to the engineer and refining manager the concepts of bio-refining applications to not only render heavier crudes as lighter crudes through microbial degradation, but also through biodenitrogenation, biodemetallization and biodesulfurization, making more petroleum derivatives purified and upgraded without the release of more pollutants.

Equipped for both upstream and downstream to learn the basics, this book is a necessary primer for today's petroleum engineer.

  • Presents the fundamentals behind petroleum biotechnology for both upstream and downstream oil and gas operations
  • Provides the latest technology in reservoir recovery using microbial enhanced oil recovery methods
  • Helps readers gain insight into the current and future application of using biotechnology as a refining and fuel blending method for heavy oil and tar sands


James G. Speight is a senior fuel consultant as well as an Adjunct Professor of Chemical and Fuels Engineering at the University of Utah, USA. He is recognized internationally as an expert in the characterization, properties, and processing of conventional and synthetic fuels and as a chemist with more than 35 years of experience in thermal/process chemistry, thermodynamics, refining of petroleum, heavy oil, and tar sand bitumen, and physics of crude with emphasis on distillation, visbreaking, coking units, and oil-rock or oil catalyst interactions. Speight is currently Editor-in-Chief for the Journal of Petroleum Science and Technology, Energy Sources-Part A: Recovery, Utilization, and Environmental Effects, and Energy Sources-Part B: Economics, Planning, and Policy. He is also the author/editor/compiler of more than 25 books and bibliographies related to fossil fuel processing and environmental issues.

Speight was Chief Scientific Officer and then Chief Executive Officer of the Western Research Institute, Laramie, WY, USA, from 1984 to 2000. During this period he led a staff of more that 150 scientists, engineers, and technicians in developing new technology for gas processing, petroleum, shale oil, tar sand bitumen, and asphalt. Speight has considerable expertise in evaluating new technologies for patentability and commercial application. As a result of his work, he was awarded the Diploma of Honor, National Petroleum Engineering Society, for outstanding contributions to the petroleum industry in 1995 and the Gold Medal of Russian Academy of Sciences (Natural) for outstanding work in the area of petroleum science in 1996. He has also received the Specialist Invitation Program Speakers Award from NEDO (New Energy Development Organization, Government of Japan) in 1987 and again in 1996 for his contributions to coal research. In 2001, he was also awarded the Einstein Medal of the Russian Academy of Sciences (Natural) in recognition of outstanding contributions.

  • Englisch
  • Saint Louis
  • |
  • USA
  • 39,86 MB
978-0-12-805288-4 (9780128052884)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Introduction to Petroleum Biotechnology
  • Introduction to Petroleum Biotechnology
  • Copyright
  • Contents
  • Biography by Dr. James G. Speight
  • Biography by Dr. Nour Shafik El-Gendy
  • Preface
  • 1 - PETROLEUM COMPOSITION AND PROPERTIES
  • 1.0 INTRODUCTION
  • 2.0 CRUDE OIL
  • 2.1 CRUDE OIL FROM TIGHT FORMATIONS
  • 2.2 OPPORTUNITY CRUDES
  • 2.3 HIGH ACID CRUDES
  • 2.4 FOAMY OIL
  • 3.0 HEAVY OIL AND EXTRA HEAVY OIL
  • 3.1 HEAVY OIL
  • 3.2 EXTRA HEAVY OIL
  • 4.0 TAR SAND BITUMEN
  • 5.0 COMPOSITION
  • 5.1 ELEMENTAL COMPOSITION
  • 5.2 CHEMICAL COMPOSITION
  • 5.3 COMPOSITION BY VOLATILITY
  • 5.4 COMPOSITION BY FRACTIONATION
  • 5.5 COMPOSITION BY SPECTROSCOPY
  • 5.6 COMPOSITION BY CHROMATOGRAPHY
  • 5.6.1 Adsorption Chromatography
  • 5.6.2 Gas Chromatography
  • 5.6.3 Gel Permeation Chromatography
  • 5.6.4 High-Performance Liquid Chromatography
  • 5.6.5 Ion-Exchange Chromatography
  • 6.0 PROPERTIES
  • 6.1 ACID NUMBER
  • 6.2 DENSITY AND SPECIFIC GRAVITY
  • 6.3 SURFACE AND INTERFACIAL TENSION
  • 6.4 VISCOSITY
  • 6.5 VOLATILITY
  • REFERENCES
  • FURTHER READING
  • 2 - REFINERY PRODUCTS AND BY-PRODUCTS
  • 1.0 INTRODUCTION
  • 2.0 GASEOUS PRODUCTS
  • 2.1 LIQUEFIED PETROLEUM GAS
  • 2.2 NATURAL GAS
  • 2.3 SHALE GAS
  • 2.4 REFINERY GAS
  • 3.0 LIQUID PRODUCTS
  • 3.1 NAPHTHA
  • 3.2 GASOLINE
  • 3.3 SOLVENTS
  • 3.4 KEROSENE AND DIESEL FUEL
  • 3.5 FUEL OIL
  • 3.6 LUBRICATING OIL
  • 3.7 WHITE OIL, INSULATING OIL, INSECTICIDES
  • 3.7.1 White Oil
  • 3.7.2 Insulating Oil
  • 3.7.3 Insecticides
  • 4.0 SEMI-SOLID AND SOLID PRODUCTS
  • 4.1 GREASE
  • 4.2 WAX
  • 4.3 ASPHALT
  • 4.4 COKE
  • 5.0 PROCESS WASTES
  • 5.1 GASES AND LOWER BOILING CONSTITUENTS
  • 5.2 HIGHER BOILING CONSTITUENTS
  • 5.3 WASTEWATER
  • 5.4 SPENT CAUSTIC
  • 5.5 SOLID WASTE
  • REFERENCES
  • 3 - INTRODUCTION TO PETROLEUM BIOTECHNOLOGY
  • 1.0 INTRODUCTION
  • 2.0 PRINCIPLES OF BIOTECHNOLOGY
  • 2.1 HISTORY
  • 2.2 INDUSTRIAL BIOTECHNOLOGY
  • 2.3 APPLICATIONS IN THE PETROLEUM INDUSTRY
  • 3.0 BIOTRANSFORMATION OF PETROLEUM CONSTITUENTS
  • 3.1 ALKANE DERIVATIVES
  • 3.2 AROMATIC HYDROCARBON DERIVATIVES
  • 3.3 POLYNUCLEAR AROMATIC HYDROCARBON DERIVATIVES
  • 3.4 HETEROCYCLIC DERIVATIVES
  • 4.0 FACTORS AFFECTING BIOTRANSFORMATION
  • 4.1 CONDITIONS FOR BIOTRANSFORMATION
  • 4.2 EFFECTS OF BIOTRANSFORMATION
  • 4.3 EFFECT OF NUTRIENTS
  • 4.4 EFFECT OF TEMPERATURE
  • 4.5 RATES OF BIOTRANSFORMATION
  • 5.0 BIOTRANSFORMATION OF CRUDE OIL IN THE RESERVOIR
  • 5.1 RESERVOIR CHARACTER
  • 5.2 TEMPERATURE EFFECTS
  • 5.3 PRESSURE EFFECTS
  • 6.0 CHALLENGES AND OPPORTUNITIES
  • REFERENCES
  • FURTHER READING
  • 4 - MICROBIAL ENHANCED OIL RECOVERY
  • 1.0 INTRODUCTION
  • 2.0 OIL RECOVERY
  • 2.1 PRIMARY PROCESSES
  • 2.2 SECONDARY PROCESSES
  • 2.3 TERTIARY PROCESSES
  • 3.0 MICROBIAL ENHANCED OIL RECOVERY
  • 3.1 APPROACHES
  • 3.1.1 Microbes and Nutrients
  • 3.1.2 Ex Situ Production of Metabolites
  • 3.1.3 In Situ Production of Metabolites
  • 3.2 MECHANISMS AND EFFECTS
  • 3.3 CHANGES IN RESERVOIR ROCK PERMEABILITY
  • 3.4 CHANGES IN RESERVOIR ROCK WETTABILITY
  • 3.5 BIOLOGICAL DEMULSIFICATION OF CRUDE OIL
  • 4.0 UPGRADING DURING RECOVERY
  • 5.0 CHALLENGES AND OPPORTUNITIES
  • REFERENCES
  • FURTHER READING
  • 5 - BIO-UPGRADING HEAVY CRUDE OIL
  • 1.0 INTRODUCTION
  • 2.0 BIODESULFURIZATION
  • 3.0 BIODENITROGENATION
  • 4.0 BIODEMETALLIZATION
  • 5.0 BIOTRANSFORMATION OF HEAVY CRUDE OIL
  • 5.1 BIODEAROMATIZATION
  • 5.2 BIOTRANSFORMATION OF ASPHALTENE CONSTITUENTS
  • 6.0 CHALLENGES AND OPPORTUNITIES
  • REFERENCES
  • FURTHER READING
  • 6 - BIOCATALYTIC DESULFURIZATION
  • 1.0 INTRODUCTION
  • 2.0 DESULFURIZATION
  • 2.1 HYDRODESULFURIZATION
  • 2.2 ADSORPTIVE DESULFURIZATION
  • 2.3 OXIDATIVE DESULFURIZATION
  • 3.0 BIOCATALYTIC DESULFURIZATION
  • 4.0 BIODESULFURIZATION OF CRUDE OIL AND ITS FRACTIONS
  • 4.1 ENZYMATIC OXIDATION OF ORGANOSULFUR COMPOUNDS
  • 4.2 LONG-TERM REPEATED SPECIFIC BIODESULFURIZATION BY IMMOBILIZATION
  • 4.3 NANOBIOCATALYTIC DESULFURIZATION
  • 5.0 BIODESULFURIZATION REACTORS
  • 6.0 CASE STUDIES
  • 7.0 CHALLENGES AND THE FUTURE PERSPECTIVES
  • REFERENCES
  • FURTHER READING
  • 7 - BIOCATALYTIC DENITROGENATION
  • 1.0 INTRODUCTION
  • 2.0 NITROGEN IN CRUDE OIL
  • 3.0 DENITROGENATION
  • 3.1 HYDRODENITROGENATION
  • 3.2 THERMAL DENITROGENATION
  • 4.0 BIOCATALYTIC DENITROGENATION
  • 5.0 CHALLENGES AND OPPORTUNITIES
  • REFERENCES
  • FURTHER READING
  • 8 - BIOTRANSFORMATION IN THE ENVIRONMENT
  • 1.0 INTRODUCTION
  • 2.0 BIOTRANSFORMATION
  • 2.1 METHOD PARAMETERS
  • 2.2 MONITORED NATURAL ATTENUATION
  • 2.3 USE OF BIOSURFACTANTS
  • 2.4 BIOENGINEERING IN BIOTRANSFORMATION
  • 3.0 ENVIRONMENTAL BIOTRANSFORMATION
  • 3.1 NATURAL BIOTRANSFORMATION
  • 3.2 METHODS OF BIOTRANSFORMATION
  • 3.3 ENHANCED BIOTRANSFORMATION
  • 3.4 BIOSTIMULATION AND BIOAUGMENTATION
  • 3.5 IN SITU AND EX SITU BIOTRANSFORMATION
  • 4.0 PRINCIPLES OF ENVIRONMENTAL BIOTRANSFORMATION
  • 4.1 FACTORS AFFECTING THE RATE OF BIOREMEDIATION
  • 4.2 TEMPERATURE
  • 4.3 ACIDITY-ALKALINITY
  • 4.4 EFFECT OF SALT
  • 4.5 BIOAVAILABILITY OF THE CONTAMINANT
  • 4.5 CONTAMINANT COMPOSITION
  • 5.0 MECHANISM OF BIOTRANSFORMATION
  • 5.1 CHEMICAL REACTIONS
  • 5.2 KINETIC ASPECTS
  • 6.0 TEST METHODS FOR BIOTRANSFORMATION
  • REFERENCES
  • FURTHER READING
  • 9 - CHEMISTRY OF BIOTRANSFORMATION
  • 1.0 INTRODUCTION
  • 2.0 BIODEGRADING MICROORGANISMS
  • 3.0 ANAEROBIC BIOTRANSFORMATION
  • 4.0 AEROBIC BIOTRANSFORMATION
  • REFERENCES
  • FURTHER READING
  • 10 - BIOREMEDIATION OF CONTAMINATED SOIL
  • 1.0 INTRODUCTION
  • 2.0 KINETICS OF PETROLEUM BIOTRANSFORMATION IN SOIL
  • 3.0 ASPECTS FOR THE SUCCESS OF BIOTRANSFORMATION
  • 3.1 INDIGENOUS AND AUGMENTED MICROBIAL POPULATION
  • 3.2 POLLUTANT TYPE AND CONCENTRATION
  • 3.3 DEGREE OF WEATHERING
  • 3.4 NUTRIENT CONCENTRATION
  • 3.5 EFFECT OF TEMPERATURE
  • 3.6 MOISTURE CONTENT
  • 3.7 SOIL TYPE
  • 3.8 SOIL INTERACTION WITH MACROORGANISMS
  • 3.9 AERATION
  • 3.10 SOIL ACIDITY-ALKALINITY
  • 3.11 HEAVY METALS
  • 3.12 SURFACTANTS
  • 4.0 CHALLENGES AND OPPORTUNITIES
  • 4.1 CONVENTIONAL BIOTRANSFORMATION
  • 4.2 ENHANCED BIOTRANSFORMATION
  • 4.3 BIOTRANSFORMATION IN EXTREME ENVIRONMENTS
  • REFERENCES
  • FURTHER READING
  • 11 - BIOREMEDIATION OF MARINE OIL SPILLS
  • 1.0 INTRODUCTION
  • 2.0 FATE OF AQUATIC OIL SPILLS
  • 2.1 SPREADING AND ADVECTION
  • 2.2 EVAPORATION
  • 2.3 DISSOLUTION
  • 2.4 PHOTO-OXIDATION
  • 2.5 EMULSIFICATION
  • 2.6 NATURAL DISPERSION
  • 2.7 SEDIMENTATION AND SINKING
  • 2.8 DEGRADATION
  • 3.0 OIL SPILL REMEDIATION METHODS
  • 3.1 BOOMING FLOATING OIL
  • 3.2 SKIMMERS
  • 3.3 PUMPS OR VACUUMS
  • 3.4 IN SITU BURNING
  • 3.5 DISPERSANTS
  • 3.6 ADSORBENTS
  • 3.7 BIOREMEDIATION
  • 4.0 FACTORS INFLUENCING RATES OF OIL SPILL BIOREMEDIATION
  • 4.1 NUTRIENTS
  • 4.2 OIL CONCENTRATION
  • 4.3 BIOAVAILABILITY OF CONTAMINANT
  • 4.4 TEMPERATURE
  • 4.5 OXYGEN AVAILABILITY
  • 4.6 PRESSURE
  • 4.7 ACIDITY-ALKALINITY
  • 4.8 SALINITY
  • 5.0 BIOREMEDIATION TECHNOLOGY FOR A MARINE OIL
  • 6.0 PREVENTION AND RESPONSE
  • REFERENCES
  • FURTHER READING
  • 12 - THE FUTURE OF PETROLEUM BIOTECHNOLOGY
  • 1.0 INTRODUCTION
  • 2.0 STATUS
  • 2.1 BIOREFINING
  • 2.2 BIODESULFURIZATION, BIODENITROGENATION, AND BIODEMETALLIZATION
  • 2.2.1 Biodesulfurization
  • 2.2.2 Biodenitrogenation
  • 2.2.3 Biodemetallization
  • 3.0 TECHNOLOGY POTENTIAL
  • 4.0 THE BIOREFINERY
  • 5.0 FUTURE TRENDS
  • REFERENCES
  • Conversion Factors
  • Glossary
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • X
  • Y
  • Z
  • Back Cover
  • CHAPTER 12 - THE FUTURE OF PETROLEUM BIOTECHNOLOGY
  • 1.0 INTRODUCTION
  • 2.0 STATUS
  • 2.1 BIOREFINING
  • 2.2 BIODESULFURIZATION, BIODENITROGENATION, AND BIODEMETALLIZATION
  • 2.2.1 Biodesulfurization
  • 2.2.2 Biodenitrogenation
  • 2.2.3 Biodemetallization
  • 3.0 TECHNOLOGY POTENTIAL
  • 4.0 THE BIOREFINERY
  • 5.0 FUTURE TRENDS
  • REFERENCES

Dateiformat: ePUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

153,51 €
inkl. 5% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen