Advances in Agronomy

 
 
Academic Press
  • erschienen am 1. Mai 2021
  • |
  • 318 Seiten
 
E-Book | PDF ohne DRM | Systemvoraussetzungen
978-0-323-85075-9 (ISBN)
 
Advances in Agronomy, Volume 167, the latest release in this leading reference on agronomy, contains a variety of updates and highlights new advances in the field. Each chapter is written by an international board of authors. Includes numerous, timely, state-of-the-art reviews on the latest advancements in agronomy Features distinguished, well recognized authors from around the world Builds upon this venerable and iconic review series Covers the extensive variety and breadth of subject matter in the crop and soil sciences
  • Englisch
  • San Diego
  • |
  • USA
Elsevier Science & Techn.
  • 20,76 MB
978-0-323-85075-9 (9780323850759)
weitere Ausgaben werden ermittelt
  • Intro
  • Advances in Agronomy
  • Copyright
  • Contents
  • Contributors
  • Preface
  • Chapter One: pXRF in tropical soils: Methodology, applications, achievements and challenges
  • 1. Introduction
  • 2. Main differences between tropical and temperate soils
  • 2.1. Soil temperature and moisture
  • 2.2. Soil mineralogy and texture
  • 2.3. Soil structure
  • 2.4. Parent material
  • 3. Fundamentals and evolution of portable X-ray fluorescence spectrometry
  • 4. Factors affecting analysis by pXRF in tropical soils and equipment accuracy assessment
  • 4.1. Soil moisture
  • 4.2. Soil organic matter (SOM)
  • 4.3. Soil sample preparation methods
  • 4.4. Scanning time
  • 4.5. Factory calibration algorithms and performance evaluation
  • 4.6. Spectral interference
  • 4.7. In situ vs ex situ analyses
  • 5. Radiation safety while using pXRF
  • 6. Tropical soil pXRF methodology
  • 7. Successful applications of pXRF in tropical soils
  • 7.1. Predictions of soil properties from pXRF data and their applicability
  • 7.2. Total elemental contents via pXRF and wet-chemistry analyses
  • 7.3. Spatial variability of soil classes and properties
  • 7.4. Applications of pXRF on soil genesis, classification and other purposes
  • 8. Future applications in tropical soil science
  • 8.1. Parent material and land use/land cover prediction
  • 8.2. Environmental contamination assessment
  • 8.3. Quantification of plant nutritional level
  • 8.4. Sensor fusion approaches
  • 9. Conclusions
  • Acknowledgments
  • Disclaimer
  • References
  • Chapter Two: Quantitative estimation of carbon dynamics in terrestrial ecosystems using natural variations in the dC abun ...
  • 1. Introduction
  • 2. Photosynthetic pathways and dC signatures of plants
  • 3. Mixing models
  • 4. In situ SOM turnover due to a known change in vegetation cover
  • 4.1. Definitions
  • 4.2. C3 to C4 vegetation change
  • 4.3. C4 to C3 vegetation change
  • 4.4. Vegetation change involving CAM species
  • 5. Soil profile indicators of a presumed change in vegetation and/or climate
  • 5.1. Ecotone boundary shifts
  • 5.2. Changes in community composition
  • 5.2.1. Fire
  • 5.2.2. Domestic animal grazing
  • 5.2.3. Climate change
  • 6. Contribution of organic materials to the soil organic C pool
  • 6.1. Legume residues
  • 6.2. Animal dung
  • 6.3. Compost
  • 6.4. Animal excreta under grazing
  • 7. Relative contributions of C3 and C4 sources to diet
  • 7.1. Domestic and wild animals
  • 7.2. Insects
  • 7.3. Earthworms
  • 7.4. Nematodes
  • 8. Relative proportions of roots of mixed C3 and C4 species
  • 9. Relative contribution of two carbon sources to respiration
  • 9.1. Roots and soil
  • 9.2. Mixed C3 and C4 plants
  • 9.3. C3 and C4 animal excreta slurries and soil
  • 9.4. Two carbon substrates in a fungal culture medium
  • 9.5. Biochar and soil
  • 10. Conclusions
  • References
  • Further reading
  • Chapter Three: The effect of elemental sulfur fertilization on plant yields and soil properties
  • 1. Introduction
  • 2. Review of literature
  • 2.1. Properties and importance of sulfur
  • 2.2. Sulfur in nature
  • 2.3. Sulfur in the soil
  • 2.4. Transformation of elemental sulfur in the soil
  • 2.5. Sulfur in plants
  • 3. Research aims
  • 4. Materials and methods
  • 4.1. Incubation experiments
  • 4.2. Pot experiments
  • 4.3. Field trials
  • 4.3.1. Climatic conditions
  • 4.3.2. Plan of experiments
  • 4.4. Chemical analysis of soil and plants
  • 4.5. Statistical methods used to obtain the results
  • 5. Research results and discussion
  • 5.1. The release of sulphates(VI) from S in incubation experiments
  • 5.1.1. The oxidation rate of S and content of sulphates(VI)
  • 5.1.2. Soil pH in incubation experiments
  • 5.2. The degree of fragmentation of S as a conditional factor in its effectiveness
  • 5.2.1. The reaction of white mustard to elemental sulfur fertilization
  • 5.2.1.1. Yield
  • 5.2.1.2. The content and uptake of sulfur and the ratio of N:S
  • 5.2.1.3. Soil pH and sulfur content
  • 5.2.2. The response of spring wheat to elemental sulfur fertilization
  • 5.2.2.1. Spring wheat yields
  • 5.2.2.2. Content and update of sulfur and the N:S ratio
  • 5.2.2.3. Soil pH and sulfur content
  • 5.2.3. Response of spring rape to elemental sulfur fertilization
  • 5.2.3.1. Spring rape yields
  • 5.2.3.2. Content and uptake of sulfur and the N:S ratio in spring rape
  • 5.2.3.3. Soil pH and sulfur content
  • 5.2.4. Response of maize to elemental sulfur fertilization
  • 5.2.4.1. Maize yields
  • 5.2.4.2. Content and uptake of sulfur and the N:S ratio
  • 5.2.4.3. Soil pH and sulfur content in the soil
  • 5.3. Determining the optimal dose of sulfur for winter rape and winter wheat
  • 5.3.1. Cultivated plant yields
  • 5.3.2. Content and uptake of sulfur and the N:S ratio in cultivated plants
  • 5.3.3. Content of glucosinolates in rape seeds
  • 5.3.4. Proportion of fatty acids in rape seed oil
  • 5.3.5. Soil pH and the content of total sulfur and sulphate(VI) in the soil
  • 5.3.6. The correlation between the selected parameters of the field experiments
  • 5.3.7. Sulfur balance in cultivated plants
  • 6. Conclusions
  • References
  • Chapter Four: Environmentally friendly agronomically superior alternatives to chemically processed phosphate fertilizers: ...
  • 1. Introduction
  • 2. Chemically processed fertilizers
  • 2.1. Production
  • 2.1.1. Environmental impact
  • 2.1.2. Resource and energy efficiency
  • 2.2. Chemically processed fertilizers usage
  • 2.2.1. Environmental impact
  • 2.2.2. Efficiency of soluble phosphate fertilizers
  • 3. PR/S/Acidithiobacillus sp. combinations
  • 3.1. Direct application of PR
  • 3.2. Studies on PR/S fertilizers
  • 3.2.1. Early studies
  • 3.2.2. Studies since 1970
  • 4. Biochemistry of PR acidulation in PR/S
  • 5. Source of Acidithiobacilli sp. bacteria
  • 5.1. Option I. Adding Acidithiobacillus sp. culture to PR/S
  • 5.2. Option II. Bacterial culture applied to the soil
  • 5.3. Option III. Relying on soil resident soil population
  • 6. Factors that affect the dissolution of PR in PR/S
  • 6.1. Rate of oxidation of S
  • 6.2. Reactivity and grade of PRs
  • 7. Agronomic evaluation of PR/S/Cult combinations
  • 7.1. Data source
  • 7.2. Results
  • 7.3. Meta-analysis-Greenhouse studies
  • 7.4. Meta-analysis permanent pastures-Field studies
  • 7.5. Meta-analysis results-Seasonal crops
  • 7.6. Discussion
  • 8. Use of low-grade PRs
  • 9. The nature of P release from PR/S/Cult
  • 10. Use of PR/S/Cult for organic farms
  • 11. PR/S/Cult as a sulfur fertilizer
  • 12. Industrial-scale production of PR/S/Cult
  • 13. Production benefits of PR/S/Cult fertilizers
  • 13.1. Economic benefits
  • 13.2. Environmental advantages
  • Acknowledgments
  • Appendix. Model search and use in meta-analysis of fertilizer trials
  • Data
  • Model search
  • References
  • Chapter Five: Automation in drip irrigation for enhancing water use efficiency in cereal systems of South Asia: Status an ...
  • 1. Introduction
  • 2. Water in agriculture: Present and future scenarios
  • 2.1. Current situation and challenges
  • 2.2. Future trends in water use
  • 3. Current status of water management in agriculture: Tools and techniques
  • 3.1. Micro-irrigation in agriculture: Progress and prospects
  • 3.1.1. Sprinkler irrigation
  • 3.1.2. Surface drip irrigation
  • 3.1.3. Sub-surface drip irrigation
  • 4. Scheduling for drip irrigation systems
  • 4.1. Climate-based approaches
  • 4.2. Evaporation-based approach
  • 4.3. Soil-based approach
  • 4.4. Plant-based approach
  • 4.5. Deficit-irrigation approach
  • 5. Designing automated drip irrigation systems
  • 5.1. Sensors and methods
  • 5.1.1. Communication techniques
  • 5.1.1.1. Wireless sensor networks (WSNs)
  • 5.1.1.2. Internet of Things (IoT) for precision irrigation systems
  • 5.1.1.3. Global system for mobile communications (GSM)-based wireless network for automated irrigation systems
  • 5.2. Case studies of different irrigation automation schemes
  • 5.2.1. Tensiometer and capacitance-based automation
  • 5.2.2. Smart phone and solar power-based irrigation automation
  • 5.2.3. Combination of soil and weather sensors-based automation
  • 5.3. Impact of irrigation automation on crop productivity and water saving
  • 6. Artificial intelligence-based automated irrigation system
  • 7. Examples of automated drip irrigation systems in cereal systems of South Asia
  • 7.1. Plot-scale evidence on automated drip irrigation in the rice-wheat system
  • 7.2. Landscape-scale evidence on automated drip irrigation systems
  • 8. Conclusions
  • 9. The way forward
  • Acknowledgments
  • References
  • Index

Dateiformat: PDF
Kopierschutz: ohne DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Verwenden Sie zum Lesen die kostenlose Software Adobe Reader, Adobe Digital Editions oder einen anderen PDF-Viewer Ihrer Wahl (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie die kostenlose App Adobe Digital Editions oder eine andere Lese-App für E-Books (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nur bedingt: Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Ein Kopierschutz bzw. Digital Rights Management wird bei diesem E-Book nicht eingesetzt.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

138,00 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF ohne DRM
siehe Systemvoraussetzungen
E-Book bestellen