Advances in Agronomy

 
 
Academic Press
  • 1. Auflage
  • |
  • erschienen am 23. September 2015
  • |
  • 262 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-803051-6 (ISBN)
 

Advances in Agronomy continues to be recognized as a leading reference and a first-rate source for the latest research in agronomy. Each volume contains an eclectic group of reviews by leading scientists throughout the world. As always, the subjects covered are rich and varied and exemplary of the abundant subject matter addressed by this long-running serial.


  • Includes numerous, timely, state-of-the-art reviews
  • Features distinguished, well recognized authors from around the world
  • Builds upon this venerable and iconic review series
  • Covers the extensive variety and breadth of subject matter in crop and soil sciences
0065-2113
  • Englisch
  • San Diego
  • |
  • USA
Elsevier Science
  • 3,98 MB
978-0-12-803051-6 (9780128030516)
0128030518 (0128030518)
weitere Ausgaben werden ermittelt
  • Front Cover
  • ADVANCES IN AGRONOMY
  • Advances in Agronomy
  • Contents
  • CONTRIBUTORS
  • PREFACE
  • One - Management-Induced Changes to Soil Organic Carbon in China: A Meta-analysis
  • 1. Introduction
  • 2. Materials and Methods
  • 2.1 Data Sources
  • 2.2 Data Analysis
  • 2.3 Statistical Analysis
  • 3. Results
  • 3.1 Mean Difference of SOC Concentration and Stock after Conversions
  • 3.2 Mean Difference of SOC Concentration and Stock at Different Soil Depth
  • 3.3 Mean Difference of SOC Concentration and Stock with Different Experimental Duration
  • 3.4 Mean Difference of SOC Concentration and Stock with Different Cropping Intensity
  • 3.5 Factors Affecting the Relative Change of SOC Concentration and Stock
  • 3.6 Relationship Between Relative Change of SOC Concentration and Stock
  • 4. Discussion
  • 4.1 Effects of Changes in Practices on SOC Concentration and Stock
  • 4.2 Depth Distribution of SOC Concentration and Stock
  • 4.3 Experimental Duration and SOC Saturation
  • 4.4 Cropping Intensity and SOC Changes
  • 5. Conclusions
  • Acknowledgments
  • References
  • Appendix A: The References of 83 Publications were Extracted for this Meta-analysis
  • 42 publications from the Web of Science® (1900-2013):
  • 41 publications from the China Knowledge Resource Integrated Database (1990-2013):
  • Appendix B: Basic Information of the Compiled Studies
  • Appendix C: Relationship between Relative Change of Applied Amount of Manure and Relative Change of SOC Concentration (Soli ...
  • Two - Advances and Perspectives to Improve the Phosphorus Availability in Cropping Systems for Agroecological Phosp ...
  • 1. INTRODUCTION
  • 2. USE OF RENEWABLE RESOURCES IMPROVING PHOSPHORUS AVAILABILITY WITHOUT COMPROMISING FINITE MINERAL RESOURCES
  • 2.1 Phosphorus Sources
  • 2.2 Phosphorus Dynamics in the Soil-Waste System
  • 2.3 Perspectives on the Use of Renewable Phosphorus Resources
  • 3. EFFICIENCY OF MULTISPECIES CROPPING SYSTEMS ON PHOSPHORUS AVAILABILITY
  • 3.1 Phosphorus Mobilization-Based Facilitation in Intercropping
  • 3.2 Positive Plant-Soil Feedback
  • 4. GENETIC TRAITS OF PLANT-MICROORGANISMS RELATIONSHIPS INVOLVED IN THE TOLERANCE OF LOW-P SOILS AND PLANT BREEDING
  • 5. CONCLUSION
  • ACKNOWLEDGMENTS
  • REFERENCES
  • Three - Using Functional Traits to Assess the Services Provided by Cover Plants: A Review of Potentialities in Bana ...
  • 1. INTRODUCTION
  • 2. SEMIPERENNIAL CROPPING SYSTEMS INCLUDING COVER PLANTS: THE CASE OF BANANA CROPPING SYSTEMS
  • 2.1 Cropping Systems Including Cover Plants
  • 2.2 Banana Cropping Systems: An Example of Semiperennial System (Figure 1)
  • 2.3 Biotic and Abiotic Constraints to Banana Production and Services Targeted from Cover Plants
  • 2.4 The Choice of Cover Plants in Banana Cropping Systems
  • 3. EFFECT TRAITS OF COVER PLANTS ASSOCIATED TO THE MAIN SERVICES TARGETED IN A BANANA CROPPING SYSTEM
  • 3.1 Control of Plant-Parasitic Nematodes
  • 3.1.1 Direct Control of Plant-Parasitic Nematodes by Plants
  • 3.1.2 Indirect Control of Plant-Parasitic Nematodes through the Food Web
  • 3.2 Weed Control
  • 3.2.1 Competition for Light
  • 3.2.1.1 Development of a Large Zone of Influence
  • 3.2.1.2 Rapid Development of the Zone of Influence
  • 3.2.1.3 Persistence of the Zone of Influence
  • 3.2.1.4 Selection of Markers
  • 3.2.2 Physical Barrier to Germination and Emergence
  • 3.2.3 Allelopathy
  • 3.3 Improvement of the Nutrient Cycling
  • 3.3.1 Complementarity for Soil Resources
  • 3.3.2 Nitrogen Fixation
  • 3.3.3 Nutrient Return to the Soil
  • 3.4 Interference with the Banana (Dis-service)
  • 3.4.1 Competition for Light
  • 3.4.2 Competition for Soil Resources
  • 3.5 Qualitative Assessment of Trade-offs and Synergies among Processes and Services
  • 4. FROM PLANT TRAITS TO SERVICES IN AGROSYSTEMS
  • 4.1 From Plant Traits to Community Functional Structure
  • 4.2 Intraspecific Variability of Traits
  • 4.3 Temporal Changes in Community Functional Structure
  • 5. CONCLUSION
  • APPENDIX: COMPLEMENTARY INDICATIONS ON MEASUREMENT METHODS OF A FEW MARKERS PROPOSED TO ASSESS THE AGROSYSTEM PROCESSES
  • 1. Allelopathic Potential
  • 2. Bioassay to Assess the Potential to Affect the Structure of Nematode Food Web
  • 3. Density of Root Impacts Counted on a Soil Profile
  • 4. Host Status Toward a Specific Nematode-e.g., Radopholus similis
  • REFERENCES
  • Four - Soil Biogeochemistry, Plant Physiology, and Phytoremediation of Cadmium-Contaminated Soils
  • 1. INTRODUCTION
  • 2. SOIL BIOGEOCHEMISTRY OF CD
  • 2.1 Soil Cd Pollution in the World
  • 2.2 Sources of Cd Pollution: Geogenic and Anthropogenic
  • 2.3 Content and Availability of Cd in Soils
  • 2.4 Cycling of Cd in Agroecosystem
  • 2.5 Biogeochemical Processes of Cd in Soil
  • 2.6 Factors that Influence Cd Availability and Cycling
  • 2.6.1 Soil Cd Content
  • 2.6.2 pH
  • 2.6.3 Soil Organic Matter
  • 2.6.4 Clay Minerals and Cation Exchange Capacity
  • 2.6.5 Fertilizers
  • 3. PLANT PHYSIOLOGY OF CD TOXICITY
  • 3.1 Growth and Morphology
  • 3.2 Uptake, Transport, and Distribution of Other Elements
  • 3.3 Plant Biochemical Processes
  • 4. CD HYPERACCUMULATOR PLANTS
  • 4.1 Cd Hyperaccumulating Plant Species and Their Origins
  • 4.2 Growth Habit, Physiology, and Biochemistry of Cd Hyperaccumulators
  • 4.3 Mechanisms of Cd Accumulation and Detoxification
  • 5. PHYTOREMEDIATION OF CD-CONTAMINATED SOILS
  • 5.1 Phytoremediation: Concept and Application
  • 5.2 Phytoremediation Enhancement
  • 5.2.1 Chelators and Hormones
  • 5.2.2 Microbial Enhancement
  • 5.2.2.1 Rhizobacteria
  • 5.2.2.2 Endophytic Bacteria
  • 5.2.2.3 Fungi
  • 5.3 Field Management of Phytoremediation
  • 5.3.1 Cocultivation
  • 5.3.2 Standing Age and Planting Density
  • 5.3.3 Harvesting Time and Method
  • 5.3.4 Climate
  • 5.3.5 Posttreatment of Biomass
  • 6. CONCLUDING REMARKS AND FUTURE RESEARCH
  • REFERENCES
  • Five - Bacterial Diseases of Crops: Elucidation of the Factors that Lead to Differences Between Field and Experimen ...
  • 1. INTRODUCTION
  • 2. PRESENCE OF INTER- AND INTRASPECIES BACTERIAL COOPERATION
  • 3. FREQUENT CLIMATIC, EDAPHIC, AND NUTRIENT STRESSES
  • 4. EXISTENCE OF BIOTIC AND ABIOTIC ASSOCIATIONS THAT LEAD TO COMPLEX DISEASE PHENOMENA
  • 5. OCCURRENCE OF SIMULTANEOUS BIOTIC STRESSES
  • 5.1 Different Time of Symptom Appearance
  • 5.2 Masking Phenomena
  • 6. HIGHER AVAILABILITY OF PORTS OF ENTRY AND PUTATIVE INFECTED SITES
  • 7. DIFFERENCE IN THE GROWTH STAGE OF PLANT MATERIALS INFECTED
  • 8. CONCLUSION
  • ACKNOWLEDGMENTS
  • REFERENCES
  • Index
  • A
  • B
  • C
  • D
  • E
  • G
  • H
  • I
  • L
  • M
  • N
  • P
  • R
  • S
  • T
  • U
  • V
  • W
  • X
  • Z
  • Backcover
Chapter One

Management-Induced Changes to Soil Organic Carbon in China


A Meta-analysis


Xin Zhao*, Ran Zhang*, Jian-Fu Xue*, Chao Pu*, Xiang-Qian Zhang*, Sheng-Li Liu*, Fu Chen*, Rattan Lal§ and Hai-Lin Zhang*,1     *College of Agronomy and Biotechnology, China Agricultural University, Key Laboratory of Farming System, Ministry of Agriculture, Beijing, China     §Carbon Management and Sequestration Center, School of Environment and Natural Resources, The Ohio State University, Columbus, OH, USA
1 Corresponding author: E-mail: hailin@cau.edu.cn 

Abstract


Soil carbon (C) sequestration is an environmentally friendly and efficient strategy to offset emissions of greenhouse gases and mitigate climate change. However, inappropriate farming practices can deplete soil organic carbon (SOC) stock and degrade soil quality. Thus, we conducted a meta-analysis to assess and identify the effects of improved farming practices on SOC sequestration in China by compiling a data set of 83 studies. The results indicated that SOC concentration and stocks at 0-30 cm depth significantly increased by 1.00 ± 0.26 g kg-1 and 0.97 ± 0.24 Mg ha-1 when plow tillage with residue removal was converted to no-till with residue retention (NT); 1.11 ± 0.21 g kg-1 and 2.09 ± 0.46 Mg ha-1 when no fertilization was changed to chemical fertilization (CF); and 1.99 ± 0.62 g kg-1 and 3.09 ± 0.99 Mg ha-1 when CF was changed to manure application (MF) (P < 0.05), respectively. However, increases in SOC were primarily observed in the surface layer and decreased with soil depth. Therefore, the adoption of NT and MF in conjunction with CF is an effective strategy to enhance SOC stock in the surface layer. Further, in single-crop farming regions, the effects are more significant at 0-10 cm depth; and the new equilibrium can occur within 11-20 years after the adoption of NT. In double-crop farming regions, conversion to MF enhanced the SOC at 0-20 cm depth over 16 years. Additional research is warranted to credibly assess the rates of residue and manure input, soil "C saturation," and soil type on the potential SOC sink capacity in China's croplands.

Keywords


Climate-smart agriculture; Farm practices; Meta-analysis; Soil organic carbon; Soil organic carbon stock List of Abbreviations BD    Soil bulk density C    Carbon CA    Conservation agriculture CF    Chemical fertilization application CI    Confidence interval F0    No fertilization MAP    Mean annual precipitation MAT    Mean annual temperature MD    Mean difference MF    Manure application NT    No-till with residue retained NT0    No-till with residue removal PT0    Plow tillage with residue removal R0    Residue removal RR    Residue retained SOC    Soil organic carbon SOM    Soil organic matter

1. Introduction


The Fifth Intergovernmental Panel on Climate Change (IPCC) reported that the global mean surface temperature has significantly increased since the late nineteenth century: the global combined land and ocean temperature increased by 0.89 °C (0.69-1.08 °C) between 1901 and 2012 (IPCC, 2013). Climate change is attributed to anthropogenic emissions of greenhouse gases (GHGs), which include CO2, CH4, and N2O (Lal, 2004a). The use of fossil fuels and land use conversion have released 545 (460-630) Pg (Pg = petagram = 1015 g = 1 giga ton) of carbon (C) to the atmosphere, leading to an increase in atmospheric CO2 concentration from 275-281 ppmv in 1750 to 390.5 ppm in 2011 (IPCC, 2013) and 400 ppmv in 2013 (WMO, 2014). Thus, identifying strategies of reducing GHGs emissions and mitigating climate change are global issues (Paustian et al., 2000; Lal, 2004c, 2007; Lal et al., 2007). Soil C pool is the third principal global C stock containing 1220-1550 Pg to 1 m and 2376-2450 Pg to 2 m depth as soil organic carbon (SOC) and 695-748 Pg to 1 m depth as inorganic C (Lal et al., 1995; Batjes, 1996). The potential of SOC sequestration is estimated to be 0.4-1.2 Pg C yr-1 throughout the world's croplands (Lal, 2004c). Thus, enhancing SOC sequestration is important to partially offsetting anthropogenic emissions and mitigating climate change. In addition, SOC is a key soil property and an important determinant of soil quality (Reeves, 1997; Sá and Lal, 2009; Brandão et al., 2011). However, conversion of natural to agricultural ecosystems may deplete the SOC pool by as much as 60% in temperate regions and 75% or more in tropical regions, degrading soil quality and biomass productivity, exacerbating risks of food insecurity, and aggravating climate change (Lal, 2004c, 2010; Lal et al., 2007). Thus, promoting farming practices which can restore SOC stock is important to mitigating climate change, improving soil quality, and advancing food security (Lal, 2007). The SOC pool is affected by a wide range of agricultural management practices including tillage (West and Post, 2002; Ussiri and Lal, 2009; Dalal et al., 2011; Zhang et al., 2014), residue management (Lu et al., 2009; Ding et al., 2014; Liu et al., 2014b), fertilization (Lu et al., 2009; Ding et al., 2014), manure application (MF) (Ding et al., 2014; Maillard and Angers, 2014), water management and soil drainage (Abid and Lal, 2008), etc. Thus, a wide range of C-smart practices have been adopted and popularized to replace traditional management practices. Conservation agriculture (CA) is widely practiced and typically leads to minimal soil disturbance (e.g., no-till, NT) and residue retention on the surface as mulch. In addition to enhancing the SOC pool, CA has numerous benefits of relevance to the environment and crop production (Delgado et al., 2013; Zhang et al., 2014). Thus, conversion of conventional tillage (e.g., plow tillage) to NT can result in redistribution of SOC within the soil profile (Powlson et al., 2014) and in soil-specific situations also enhance the SOC pool (West and Post, 2002; Zhang et al., 2014), particularly in surface soil (West and Post, 2002; Lu et al., 2009; Zhang et al., 2013b). Conversion to CA also enhances soil quality, increases aggregation, and improves aeration by enriching the surface SOC (Doran and Parkin, 1994; Franzluebbers et al., 2007). Agronomic yield in degraded soils can be increased by restoring the SOC pool (Lal, 2004c). Adoption of recommended management practices (RMPs) and integrated nutrient management are some of the strategies that can be used to restore SOC stock in depleted and degraded soils. However, the rate of SOC restoration is affected by numerous factors including climate (rainfall, temperature, evaporation, and seasonal distribution), soil texture and structure, farming system, and specific RMPs of soil and crop management (Lal, 2004c; Johnston et al., 2009). SOC sequestration is to enhance the SOC stock compared to the pretreatment status due to soil humus through land unit plants, plant residues, and other organic solids that originate from the atmospheric CO2 pool (Olson, 2013; Olson et al., 2014). Because of the complexity of SOC sequestration, the amounts of SOC sequestration attained under different farming practices are not clear and have numerous uncertainties. For example, the impact of NT on SOC concentration and pool follows different trends in the long- or short-terms due to experimental...

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

164,22 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok