Safety Critical Systems Handbook

A Straightforward Guide to Functional Safety: IEC 61508 (2010 Edition), IEC 61511 (2015 Edition) and Related Guidance
 
 
Butterworth-Heinemann (Verlag)
  • 4. Auflage
  • |
  • erschienen am 4. August 2016
  • |
  • 330 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-08-100897-3 (ISBN)
 

The Safety Critical Systems Handbook: A Straightforward Guide to Functional Safety: IEC 61508 (2010 Edition), IEC 61511 (2016 Edition) & Related Guidance, Fourth Edition, presents the latest on the electrical, electronic, and programmable electronic systems that provide safety functions that guard workers and the public against injury or death, and the environment against pollution.

The international functional safety standard IEC 61508 was revised in 2010, and authors David Smith and Kenneth Simpson provide a comprehensive guide to the revised standard, as well as the revised IEC 61511 (2016). The book enables engineers to determine if a proposed or existing piece of equipment meets the safety integrity levels (SIL) required by the various standards and guidance, and also describes the requirements for the new alternative route (route 2H), introduced in 2010.

A number of other areas have been updated by Smith and Simpson in this new edition, including the estimation of common cause failure, calculation of PFDs and failure rates for redundant configurations, societal risk, and additional second tier guidance documents.

As functional safety is applicable to many industries, this book will have a wide readership beyond the chemical and process sector, including oil and gas, machinery, power generation, nuclear, aircraft, and automotive industries, plus project, instrumentation, design, and control engineers.


  • Provides the only comprehensive guide to IEC 61508, updated to cover the 2010 amendments, that will ensure engineers are compliant with the latest process safety systems design and operation standards
  • Addresses the 2016 updates to IEC 61511 to helps readers understand the processes required to apply safety critical systems standards and guidance
  • Presents a real-world approach that helps users interpret new standards, with case studies and best practice design examples throughout


Dr David J Smith is the Proprietor of Technis Consultancy. He has written numerous books on Reliability and Safety over the last 35 years. His FARADIP database has become widely used, and his other software packages are also used throughout the profession. His PhD thesis was on the subject of reliability prediction and common cause failure. He contributed to the first drafting of IEC 61508 and chairs the IGEM panel which produces SR/15 (the gas industry safety related guidance). David is past President of the Safety and Reliability Society.
  • Englisch
  • Oxford
  • |
  • Großbritannien
Elsevier Science
  • 5,90 MB
978-0-08-100897-3 (9780081008973)
008100897X (008100897X)
weitere Ausgaben werden ermittelt
  • Front Cover
  • The Safety Critical Systems Handbook
  • The Safety Critical Systems Handbook
  • Copyright
  • Contents
  • The relationship of the documents to IEC 61508
  • A Quick Overview
  • The 2010 Version of IEC 61508
  • Architectural Constraints (Chapter 3)
  • Security (Chapter 2)
  • Safety Specifications (Chapter 3)
  • Digital Communications (Chapter 3)
  • ASICs and Integrated Circuits (Chapters 3 and 4)
  • Safety Manual (Chapters 3 and 4)
  • Synthesis of Elements (Chapter 3)
  • Software Properties of Techniques (Chapter 4)
  • Element (Appendix 8)
  • The 2016 Version of IEC 61511
  • Acknowledgments
  • A - The Concept of Safety Integrity
  • 1 - The Meaning and Context of Safety Integrity Targets
  • 1.1 Risk and the Need for Safety Targets
  • 1.2 Quantitative and Qualitative Safety Target
  • 1.3 The Life-Cycle Approach
  • Section 7.1 of Part 1
  • Concept and scope [Part 1-7.2 and 7.3]
  • Hazard and risk analysis [Part 1-7.4]
  • Safety requirements and allocation [Part 1-7.5 and 7.6]
  • Plan operations and maintenance [Part 1-7.7]
  • Plan installation and commissioning [Part 1-7.9]
  • Plan the validation [Part 1d7.8]
  • The safety requirements specification [Part 1-7.10]
  • Design and build the system [Part 1-7.11 and 7.12]
  • Install and commission [Part 1-7.13]
  • Validate that the safety-systems meet the requirements [Part 1-7.14]
  • Operate, maintain, and repair [Part 1-7.15]
  • Control modifications [Part 1-7.16]
  • Disposal [Part 1-7.17]
  • Verification [Part 1-7.18]
  • Functional safety assessments [Part 1-8]
  • 1.4 Steps in the Assessment Process
  • Step 1. Establish Functional Safety Capability (i.e., Management)
  • Step 2. Establish a Risk Target
  • Step 3. Identify the Safety Related Function(s)
  • Step 4. Establish SILs for the Safety-Related Elements
  • Step 5. Quantitative Assessment of the Safety-Related System
  • Step 6. Qualitative Assessment Against the Target SILs
  • Step 7. Establish ALARP
  • 1.5 Costs
  • 1.5.1 Costs of Applying the Standard
  • 1.5.2 Savings from Implementing the Standard
  • 1.5.3 Penalty Costs from Not Implementing the Standard
  • 1.6 The Seven Parts of IEC 61508
  • 1.7 HAZOP (Hazard and Operability Study)
  • 1.7.1 Objectives of a HAZOP
  • 1.7.2 HAZOP Study Team
  • 1.7.3 Typical Information Used in the HAZOP
  • 1.7.4 Typical HAZOP Worksheet Headings
  • Design Intent
  • Nodes
  • Parameter/Guidewords
  • Causes
  • Consequence
  • Safeguards
  • Action Required
  • 1.7.5 Risk Ranking
  • 1.7.6 Quantifying Risk
  • 2 - Meeting IEC 61508 Part 1
  • 2.1 Establishing Integrity Targets
  • 2.1.1 The Quantitative Approach
  • (a) Maximum Tolerable Risk
  • (b) Maximum tolerable failure rate
  • Example
  • On site
  • Off site
  • (c) Safety integrity levels (SILs)
  • Simple example (low demand)
  • Simple example (high demand)
  • More complex example
  • (d) Exercises
  • 2.1.2 Layer of Protection Analysis
  • 2.1.3 The Risk Graph Approach
  • 2.1.4 Safety Functions
  • 2.1.5 "Not Safety-Related"
  • 2.1.6 SIL 4
  • 2.1.7 Environment and Loss of Production
  • 2.1.8 Malevolence and Misuse
  • Paragraph 7.4.2.3 of Part 1 of the Standard
  • 2.2 "As Low as Reasonably Practicable"
  • 2.3 Functional Safety Management and Competence
  • 2.3.1 Functional Safety Capability Assessment
  • 2.3.2 Competency
  • (a) IET/BCS "Competency guidelines for safety-related systems practitioners"
  • (b) HSE document (2007) "Managing competence for safety-related systems"
  • Annex D of "Guide to the application of IEC 61511"
  • (d) Competency register
  • 2.3.3 Independence of the Assessment
  • 2.3.4 Hierarchy of Documents
  • 2.3.5 Conformance Demonstration Template
  • IEC 61508 Part 1
  • 2.4 Societal Risk
  • 2.4.1 Assess the Number of Potential Fatalities
  • 2.4.2 It Is Now Necessary to Address the Maximum Tolerable Risk
  • 2.4.3 The Propagation to Fatality
  • 2.4.4 Scenarios with Both Societal and Individual Implications
  • 2.5 Example Involving Both Individual and Societal Risk
  • 2.5.1 Individual Risk Argument
  • 2.5.2 Societal Risk Argument
  • 2.5.3 Conclusion
  • 3 - Meeting IEC 61508 Part 2
  • 3.1 Organizing and Managing the Life Cycle
  • Sections 7.1 of the Standard: Table '1'
  • 3.2 Requirements Involving the Specification
  • Section 7.2 of the Standard: Table B1 (avoidance)
  • (a) The safety requirements specification
  • (b) Separation of functions
  • 3.3 Requirements for Design and Development
  • Section 7.4 of the Standard: Table B2 (avoidance)
  • 3.3.1 Features of the Design
  • Sections 7.4.1-7.4.11 excluding 7.4.4 and 7.4.5
  • 3.3.2 Architectures (i.e., SFF)
  • Section 7.4.4 Tables '2' and '3'
  • 3.3.3 Random Hardware Failures
  • Section 7.4.5
  • 3.4 Integration and Test (Referred to as Verification)
  • Section 7.5 and 7.9 of the Standard Table B3 (avoidance)
  • 3.5 Operations and Maintenance
  • Section 7.6 Table B4 (avoidance)
  • 3.6 Validation (Meaning Overall Acceptance Test and the Close Out of Actions)
  • Section 7.3 and 7.7: Table B5
  • 3.7 Safety Manuals
  • Section 7.4.9.3-7 and App D
  • 3.8 Modifications
  • Section 7.8
  • 3.9 Acquired Subsystems
  • 3.10 "Proven in Use" (Referred to as Route 2s in the Standard)
  • 3.11 ASICs and CPU Chips
  • (a) Digital ASICs and User Programmable ICs
  • Section 7.4.6.7 and Annex F of the Standard
  • (b) Digital ICs with On-Chip Redundancy (up to SIL 3)
  • Annex E of the Standard
  • 3.12 Conformance Demonstration Template
  • IEC 61508 Part 2
  • 4 - Meeting IEC 61508 Part 3
  • 4.1 Organizing and Managing the Software Engineering
  • 4.1.1 Section 7.1 and Annex G of the Standard Table "1"
  • 4.2 Requirements Involving the Specification
  • 4.2.1 Section 7.2 of the Standard: Table A1
  • 4.3 Requirements for Design and Development
  • 4.3.1 Features of the Design and Architecture
  • Section 7.4.3 of the Standard: Table A2
  • 4.3.2 Detailed Design and Coding
  • Paragraphs 7.4.5, 7.4.6, Tables A4, B1, B5, B7, B9
  • 4.3.3 Programming Language and Support Tools
  • Paragraph 7.4.4, Table A3
  • 4.4 Integration and Test (Referred to as Verification)
  • 4.4.1 Software Module Testing and Integration
  • Paragraphs 7.4.7, 7.4.8, Tables A5, B2, B3, B6, B8
  • 4.4.2 Overall Integration Testing
  • Paragraph 7.5, Table A6
  • 4.5 Validation (Meaning Overall Acceptance Test and Close Out of Actions)
  • Paragraphs 7.3, 7.7, 7.9, Table A7
  • 4.6 Safety Manuals
  • (Annex D)
  • 4.7 Modifications
  • Paragraph 7.6, 7.8, Table A8 and B9
  • 4.8 Alternative Techniques and Procedures
  • 4.9 Data-Driven Systems
  • 4.9.1 Limited Variability Configuration, Limited Application Configurability
  • 4.9.2 Limited Variability Configuration, Full Application Configurability
  • 4.9.3 Limited Variability Programming, Limited Application Configurability
  • 4.9.4 Limited Variability Programming, Full Application Configurability
  • 4.10 Some Technical Comments
  • 4.10.1 Static Analysis
  • 4.10.2 Use of "Formal" Methods
  • 4.10.3 PLCs (Programmable Logic Controllers) and their Languages
  • 4.10.4 Software Reuse
  • 4.10.5 Software Metrics
  • 4.11 Conformance Demonstration Template
  • IEC 61508 Part 3
  • 5 - Reliability Modeling Techniques
  • 5.1 Failure Rate and Unavailability
  • 5.2 Creating a Reliability Model
  • 5.2.1 Block Diagram Analysis
  • 5.2.1.1 Basic equations
  • Allowing for revealed and unrevealed failures
  • Allowing for "large" values of ?T
  • Effect of staggered proof test
  • Allowing for imperfect proof tests
  • Partial stroke testing
  • 5.2.2 Common Cause Failure (CCF)
  • (a) Categories of factors
  • (b) Scoring
  • (c) Taking account of diagnostic coverage
  • (d) Subdividing the checklists according to the effect of diagnostics
  • (e) Establishing a model
  • (f) Nonlinearity
  • (g) Equipment type
  • (h) Calibration
  • 5.2.3 Fault Tree Analysis
  • 5.3 Taking Account of Auto Test
  • 5.4 Human Factors
  • 5.4.1 Addressing Human Factors
  • 5.4.2 Human Error Rates
  • "HEART" method
  • "TESEO" method
  • 5.4.3 A Rigorous Approach
  • 6 - Failure Rate and Mode Data
  • 6.1 Data Accuracy
  • 6.2 Sources of Data
  • 6.2.1 Electronic Failure Rates
  • 6.2.2 Other General Data Collections
  • 6.2.3 Some Older Sources
  • 6.2.4 Manufacturer's Data
  • 6.2.5 Anecdotal Data
  • 6.3 Data Ranges and Confidence Levels
  • 6.4 Conclusions
  • 7 - Demonstrating and Certifying Conformance
  • 7.1 Demonstrating Conformance
  • 7.2 The Current Framework for Certification
  • 7.3 Self-Certification (Including Some Independent Assessment)
  • 7.3.1 Showing Functional Safety Capability (FSM) as Part of the Quality Management System
  • 7.3.2 Application of IEC 61508 to Projects/Products
  • 7.3.3 Rigor of Assessment
  • 7.3.4 Independence
  • 7.4 Preparing for Assessment
  • 7.5 Summary
  • B - Specific Industry Sectors
  • 8 - Second Tier Documents-Process, Oil and Gas Industries
  • 8.1 IEC International Standard 61511: Functional Safety-Safety Instrumented Systems for the Process Industry Sector (Second Edition to be Published in 2016)
  • 8.1.1 Organizing and Managing the Life Cycle
  • 8.1.2 Requirements Involving the Specification
  • 8.1.3 Requirements for Design and Development
  • (a) Selection of components and subsystems
  • (b) Architecture (i.e., safe failure fraction)
  • (c) Predict the random hardware failures
  • (d) Software (referred to as "program")
  • (i) Requirements
  • (ii) Software library modules
  • (iii) Software design specification
  • (iv) Code
  • (v) Programming support tools
  • 8.1.4 Integration and Test (Referred to as Verification)
  • 8.1.5 Validation (Meaning Overall Acceptance Test and Close Out of Actions)
  • 8.1.6 Modifications
  • 8.1.7 Installation and Commissioning
  • 8.1.8 Operations and Maintenance
  • 8.1.9 Conformance Demonstration Template
  • 8.1.10 Prior Use
  • 8.2 Institution of Gas Engineers and Managers IGEM/SR/15: Programmable Equipment in Safety-Related Applications-5th Edition 2010
  • 8.3 Guide to the Application of IEC 61511 to Safety Instrumented Systems in the UK Process Industries
  • 8.4 ANSI/ISA-84.00.01 (2004)-Functional Safety, Instrumented Systems for the Process Sector
  • 8.5 Recommended Guidelines for the Application of IEC 61508 and IEC 61511 in the Petroleum Activities on the Norwegian Continental Shelf OLF-070-Rev 2, 2004
  • 8.6 Energy Institute: Guidance on Safety Integrity Level (SIL) Determination, Expected to be Published 2016
  • 9 - Machinery Sector
  • 9.1 EN ISO 12100:2010
  • 9.2 EN ISO 13849
  • The Assessment
  • 9.2.1 Systematic Failures
  • 9.3 BS EN 62061
  • 9.3.1 Targets
  • SIL assignment
  • 9.3.2 Design
  • 9.3.3 Template Assessment Checklist for BS EN 62061
  • Clause 4 Management of Functional Safety
  • Clause 5 Requirements for the Specification of Safety-Related Control Functions (SRCFs)
  • Clause 6 Design and Integration of the SRECS
  • Clause 7 Information for Use of the SRECS
  • Clause 8 Validation of the SRECS
  • Clause 9 Modification
  • 9.4 BS EN ISO 13850: 2015 Safety of Machinery-Emergency Stop-Principles for Design
  • 10 - Other Industry Sectors
  • 10.1 Rail
  • 10.1.1 European Standard EN 50126: 1999: Railway Applications-The Specification and Demonstration of Dependability, Reliability, Maintainability, and Safety (RAMS)
  • 10.1.2 EN 50126 and EN 50128 and EN 50129
  • 10.1.3 Engineering Safety Management (known as The Yellow Book)-Issue 4.0 2005
  • Railway safety case
  • Engineering safety case
  • 10.2 UK MOD Documents
  • 10.2.1 Defense Standard 00-56 (Issue 6.0, 2015): Safety Management Requirements for Defense Systems
  • 10.2.2 Defense Standard 00-55 (Issue 3.0, 2014): Requirements for Safety of Programmable Elements (PE) in Defense Systems
  • 10.3 Earth Moving Machinery
  • 10.3.1 EN 474 Earth Moving Machinery-Safety
  • 10.3.2 ISO/DIS 15998 Earth Moving Machinery-MCS Using Electronics
  • 10.4 Coding Standard
  • 10.4.1 C3, Guidelines for the Use of the C Language in Critical Systems-MISRA (Motor Industries Research Association)-2013
  • 10.5 Automotive
  • 10.5.1 ISO 26262 Road Vehicles: 2011-Functional Safety
  • 10.5.2 ISO/DIS 25119 Tractors and Machinery for Agriculture
  • 10.5.3 MISRA (Motor Industry Software Reliability Association), 2007: Guidelines for Safety Analysis of Vehicle-Based Software
  • 10.6 Nuclear
  • 10.6.1 IEC International Standard 61513: Nuclear Power Plants-Instrumentation and Control for Systems Important to Safety-General General Requirements for Systems
  • 10.7 Avionics
  • 10.7.1 RTCA DO-178C: Software Considerations in Airborne Systems and Equipment Certification
  • 10.7.2 RTCA/DO-254 Design Assurance Guidance for Airborne Electronic Hardware
  • 10.7.3 ARINC 653: Multiple Application Hosting
  • 10.7.4 ARINC 661 Standard Cockpit Display System Interfaces to User System
  • 10.8 Medical-IEC 60601 Medical Electrical Equipment, General Requirements for Basic Safety and Essential Performance 2014
  • 10.9 Stage and Theatrical Equipment
  • 10.9.1 SR CWA 15902-1:2009 Lifting and Load-Bearing Equipment for Stages and Other Production Areas Within the Entertainment Industry
  • 10.10 Electrical Power Drives
  • 10.10.1 BS EN 61800-5-2:2007 Adjustable Speed Electrical Power Drive Systems
  • 10.11 Energy Institute (See also Section 8.6)
  • 10.11.1 Guidance on Assessing the Safety Integrity of Electrical Supply Protection: 2006
  • 10.11.2 Guidelines for the Management of Safety Critical Elements: 2007
  • C - Case Studies in the Form of Exercises and Examples
  • 11 - Pressure Control System (Exercise)
  • 11.1 The Unprotected System
  • 11.2 Protection System
  • 11.3 Assumptions
  • 11.4 Reliability Block Diagram
  • 11.5 Failure Rate Data
  • 11.6 Quantifying the Model
  • 11.7 Proposed Design and Maintenance Modifications
  • 11.8 Modeling CCF (Pressure Transmitters)
  • 11.9 Quantifying the Revised Model
  • 11.10 ALARP
  • 11.11 Architectural Constraints
  • 12 - Burner Control Assessment (Example)
  • Safety Integrity Study of a Proposed Replacement Boiler Controller
  • Executive Summary and Recommendations
  • Objectives
  • Targets
  • Results
  • Recommendations
  • 12.1 Objectives
  • 12.2 Integrity Requirements
  • 12.3 Assumptions
  • 12.3.1 Specific
  • 12.3.2 General
  • 12.4 Results
  • 12.4.1 Random Hardware Failures
  • 12.4.2 Qualitative Requirements
  • 1 Requirements
  • 2 Design and language
  • 3 Fault tolerance
  • 4 Documentation and change control
  • 5 Design review
  • 6 Test (applies to both hardware and software)
  • 7 Integrity assessment
  • 8 Quality, safety, and management
  • 9 Installation and commissioning
  • 12.4.3 ALARP
  • 12.5 Failure Rate Data
  • 12.6 References
  • Annex I Fault Tree Details
  • 13 - SIL Targeting-Some Practical Examples
  • 13.1 A Problem Involving EUC/SRS Independence
  • 13.2 A Hand-held Alarm Intercom, Involving Human Error in the Mitigation
  • 13.3 Maximum Tolerable Failure Rate Involving Alternative Propagations to Fatality
  • (a) Concentration of Gas on Site
  • (b) Spread of Gas to Nearby Habitation
  • 13.4 Hot/Cold Water Mixer Integrity
  • 13.5 Scenario Involving High Temperature Gas to a Vessel
  • ALARP
  • 13.6 LOPA Examples
  • 13.6.1 Example using the LOPA Technique (1)
  • 13.6.2 Example using the LOPA Technique (2)
  • 14 - Hypothetical Rail Train Braking System (Example)
  • 14.1 The Systems
  • 14.2 The SIL Targets
  • 14.3 Assumptions
  • 14.4 Failure Rate Data
  • 14.5 Reliability Models
  • 14.5.1 Primary Braking System (High Demand)
  • 14.5.2 Emergency Braking System (Low Demand)
  • 14.6 Overall Safety-Integrity
  • 15 - Rotorcraft Accidents and Risk Assessment
  • 15.1 Helicopter Incidents
  • 15.2 Floatation Equipment Risk Assessment
  • 15.2.1 Assessment of the Scenario
  • 15.2.2 ALARP
  • 16 - Hydroelectric Dam and Tidal Gates
  • 16.1 Flood Gate Control System
  • 16.1.1 Targets
  • 16.1.2 Assessment
  • (a) Common cause failures (CCFs)
  • (b) Assumptions
  • (c) Failure rates of component parts
  • Results and conclusions
  • 16.2 Spurious Opening of Either of Two Tidal Lock Gates Involving a Trapped Vessel
  • We shall now address ALARP
  • 1 - Functional Safety Management
  • Template Procedure
  • Company Standard xxx Implementation of Functional Safety
  • Contents
  • 1. Purpose of Document
  • 2. Scope
  • 3. Functional Safety Policy
  • 4. Quality and Safety Plan
  • 5. Competencies
  • Functional Safety Manager
  • Safety Authority
  • Functional Safety Auditor
  • Lead Project Engineer
  • 6. Review of Requirements and Responsibilities
  • 6.1 Source of the Requirement
  • 6.2 Contract or Project Review
  • 6.3 Assigning Responsibilities
  • 7. Functional Safety Specification
  • 8. Life-Cycle Activities
  • 8.1 Integrity Targeting
  • 8.2 Random Hardware Failures
  • 8.3 ALARP (As Low As Reasonably Practicable)
  • 8.4 "Architectures"
  • 8.5 Life-Cycle Activities
  • 8.6 Functional Safety Capability
  • 8.6.1 Audit
  • 8.6.2 Changes
  • 8.6.3 Failures
  • 8.6.4 Placing requirements onto suppliers
  • 8.7 Functional safety assessment report
  • 9. Implementation
  • 10. Validation
  • Annex A
  • Notes on the Second-level Work Instructions 001-008
  • 2 - Assessment Schedule
  • 1. Defining the Assessment and the Safety System
  • 2. Describing the Hazardous Failure Mode and Safety Targets
  • 3. Assessing the Random Hardware Failure Integrity of the Proposed Safety-Related System
  • 4. Assessing the Qualitative Integrity of the Proposed Safety-Related System
  • 5. Reporting and Recommendations
  • 6. Assessing Vendors
  • 7. Addressing Capability and Competence
  • 3 - BETAPLUS CCF Model, Scoring Criteria
  • Checklist for Equipment Containing Programmable Electronics
  • (1) Separation/segregation
  • (2) Diversity
  • (3) Complexity/design/application/maturity/experience
  • (4) Assessment/analysis and feedback of data
  • (5) Procedures/human interface
  • (6) Competence/training/safety culture
  • (7) Environmental control
  • (8) Environmental testing
  • Checklist and Scoring for Nonprogrammable Equipment
  • (1) Separation/segregation
  • (2) Diversity
  • (3) Complexity/design/application/maturity/experience
  • (4) Assessment/analysis and feedback of data
  • (5) Procedures/human interface
  • (6) Competence/training/safety culture
  • (7) Environmental control
  • (8) Environmental testing
  • 4 - Assessing Safe Failure Fraction and Diagnostic Coverage
  • 1. Failure Mode and Effect Analysis
  • 2. Rigor of the Approach
  • 5 - Answers to Examples
  • Answer to Exercise 1 (Section 2.1.1 (d))
  • Answer to Exercise 2 (Section 2.1.1 (d))
  • Answer 2.1
  • Answer 2.2
  • Answer to Exercise 3 (Section 2.1.1 (d))
  • Answer to Exercise 4 (Section 2.2)
  • Answer to Exercises (Chapter 11)
  • 11.2 Protection System
  • 11.4 Reliability Block Diagram
  • 11.6 Quantifying the Model
  • 11.7 Revised Diagrams
  • 11.9 Quantifying the Revised Model
  • 11.10 ALARP
  • 11.11 Architectural Constraints
  • Comments on Example (Chapter 12)
  • 12.2 Integrity Requirements
  • 12.4.1 ALARP
  • 12.5 Failure Rate Data
  • 6 - References
  • 7 - Quality and Safety Plan
  • 1. Responsibilities (by name and those persons must be listed in the company competency register)
  • 2. Product/Project Scope and Life-cycle Details for this Product/Project
  • 3. Hazard Analysis and Risk Assessment
  • 4. Items/Deliverables to be Called for and Described in Outline
  • Document Hierarchy
  • List of Hardware Modules
  • List of Software Items
  • User Manual
  • Review Plan
  • Test Plan
  • Validation Plan/Report
  • 5. Procurement
  • 8 - Some Terms and Jargon of IEC 61508
  • FARADIP.THREE (£475+VAT)
  • LOPA-PLUS (£299+VAT)
  • TTREE (£775+VAT)
  • BETAPLUS (£125+VAT)
  • Advertisement
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • Y
  • Z
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

160,65 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok